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Abstract We study the charge transport of the noninteracting electron gas in a two-
dimensional quantum Hall system with Anderson-type impurities at zero temperature. We
prove that there exist localized states of the bulk order in the disordered-broadened Landau
bands whose energies are smaller than a certain value determined by the strength of the uni-
form magnetic field. We also prove that, when the Fermi level lies in the localization regime,
the Hall conductance is quantized to the desired integer and shows the plateau of the bulk
order for varying the filling factor of the electrons rather than the Fermi level.

Keywords Quantum Hall effect - Landau Hamiltonian - Strong magnetic field - Anderson
localization - Hall conductance plateaus

1 Introduction

The two most remarkable facts of the integral quantum Hall effect [1] are the integrality
of the Hall conductance and its robustness for varying the parameters such as the filling
factor of the electrons and the strength of the disorder. The integrality is explained by the
topological nature [2, 3] of the Hall conductance. The constancy of the Hall conductance is
due to the Anderson localization of the wavefunctions of the electrons [4].

First of all we shall survey recent mathematical analysis of the quantum Hall effect. As
for justification of the conductance formula leading to the topological invariant, satisfactory
results have been obtained in the recent papers within the linear response approximation
or an adiabatic limit of slowly applying an electric field [5-9]. Avron, Seiler and Yaffe [5]
proved that a flux averaged charge transport! is quantized to an integer in the adiabatic limit
under the assumption of a nonvanishing spectral gap above a non-degenerate ground state

IThis is a non-trivial charge transport which is intrinsically different from the response to a static external
field.
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for a finite-volume interacting electron gas. In [6], a static electric field with a regularized
boundary condition was used as an external force to derive an electric current for a finite-
volume interacting electron gas under the assumption of a nonvanishing spectral gap above
the sector of the ground state(s). The resulting Hall conductance is equal to the universal
conductance multiplied by the filling factor of the electrons in the infinite-volume limit.
When the Fermi level lies in a spectral gap for a noninteracting electron gas on the whole
plane R?, Elgart and Schlein [7] justified the Hall conductance formula which is written in
terms of switch functions in the adiabatic limit. This formula was first introduced by Avron,
Seiler and Simon [10, 11]. Without relying on the gap assumption, a general conductance
formula was obtained for finite-volume interacting electron gases [8]. For the whole plane,
Bouclet, Germinet, Klein and Schenker [9] obtained a Hall conductance formula for a ran-
dom noninteracting electron gas with translation ergodicity under the assumption that the
Fermi level falls into a localization regime.

As to the localization and the related conductance plateaus, we refer only to a class of
noninteracting electron gases because the localization of interacting electrons is still an un-
solved problem. The existence of the localization at the edges of the disordered-broadened
Landau bands was proved within a single-band approximation [12-14], for a sufficiently
strong magnetic field [15-17], or for a low density of the electrons at the band edges [18].
The existence of the quantized Hall conductance plateaus was first proved by Kunz [19]
under assumptions on a linear response formula of the conductance and on the band edge
localization. The latter assumption on the localization can be removed for a tight-binding
model. Namely, the constancy of the quantized Hall conductance was proved within the
tight-binding approximation for varying the Fermi level [20, 21], or the strength of the po-
tential [22]. We should remark that, without relying on the translation ergodicity of the
Hamiltonian, Elgart, Graf and Schenker [23] proved the constancy of the quantized Hall
conductance for a tight-binding case. For continuous models, Nakamura and Bellissard [24]
proved that the states at the bottom of the spectrum do not contribute to the Hall conduc-
tance. Quite recently, Germinet, Klein and Schenker [25] proved that the Hall conductance
formula [10, 11] which is written in terms of switch functions shows a plateau for a ran-
dom Landau Hamiltonian with translation ergodicity. In order to determine the integer of
the quantized value of the Hall conductance, they further required the condition that the
disordered-broadened Landau bands are disjoint, i.e., there exists a nonvanishing spectral
gap between two neighboring Landau bands. However, the existence of the localized states at
the band edges does not necessarily implies the appearance of the Hall conductance plateaus
for varying the filling factor of the electrons because the density of the localized states may
be vanishing in the infinite volume. In order to show the existence of such plateaus, we need
to prove the existence of localized states of the bulk order. In passing, we remark that Wang
[26] obtained the asymptotic expansion for the density of states in the large magnetic field
limit.?

In this paper, we focus on the issue of proving the bulk order plateaus, and consider a non-
interacting electron gas with Anderson-type impurities in a magnetic field in two dimensions
at zero temperature. The centers of the bumps of the impurities form the triangular lattice.
First we prove that there exist localized states of the bulk order in the disordered-broadened

’In general, an asymptotic series does not give us any information for a fixed finite value of the parameter
because the asymptotic series is not necessarily convergent. See, for example, Sect. XII.3 of the book [27].
Thus the result of [26] dose not imply the existence of localized states of the bulk order for a fixed finite
value of the magnetic field. See also the recent paper [28] for the difficulty of obtaining a lower bound for the
density of states.
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Landau bands whose energies are smaller than a certain value determined by the strength of
the magnetic field. In order to obtain the Hall conductance as a linear response coefficient
to an external electric field, we apply a time-dependent vector potential A (7) = (0, «()),
where the function «(¢) of time ¢ is given by (2.18) in the next section. For t € [—T, 0] with
alarge positive T, the corresponding electric field is adiabatically switched on, and for ¢ > 0,
the electric field becomes (0, F') with the constant strength F'. First we consider the finite,
isolated system of an L, x L, rectangular box, and impose periodic boundary conditions
for the wavefunctions with the help of the magnetic translation (2.17), and then we take the
infinite-volume limit. The explicit expression of the conductance formula which we will use
is given in Ref. [8]. We should remark that, when the system is translationally invariant,
the constant Hall current flows on the torus without dissipation of energy as in Ref. [8].
We prove that, when the Fermi level lies in the localization regime, the Hall conductance
is quantized to the desired integer and shows the plateau of the bulk order for varying the
filling factor of the electrons. In our approach, we require neither the disjoint condition for
the Landau bands nor the translation ergodicity® of the Hamiltonian which were assumed in
[25] as mentioned above. Instead of these condition, we need the “covering condition” that
the whole plane R? is covered by the supports of the bumps of the impurity potentials so that
the sum of the bumps is strictly positive on the whole plane R?. This “covering condition”
is not required in [25].

The present paper is organized as follows. In Sect. 2, we describe the model, and state
our main theorems. As preliminaries, we study the spectrum of the Hamiltonian without the
random potential in Sect. 3 and the site percolation on the triangular lattice of the impurities
in Sect. 4. In Sect. 5, we obtain a decay bound for the resolvent (Green function) of a fi-
nite volume. This bound becomes the initial data for the multi-scale analysis [29-31] which
is given in Sect. 6. In order to prove constancy of the Hall conductance, we further need
the fractional moment bound [32] for the resolvent. The bound is given in Sect. 7. As pre-
liminaries for proving the integrality and constancy of the Hall conductance, we study the
finite volume Hall conductance in Sect. 8. The integrality of the Hall conductance is proved
within the framework of “noncommutative geometry” [10, 11, 20, 21] in Sect. 9, and the
constancy is proved by using the homotopy argument [20, 22] in Sect. 10. The widths of the
Hall conductance plateaus and the corrections to the linear response formula are estimated
in Sects. 11 and 12, respectively. Appendices A—H are devoted to technical estimates. The
standard Hall conductance formula which is given in Sect. 9 is written in terms of the po-
sition operator of the electron. In Appendix I, we give a proof that this Hall conductance is
equal to another Hall conductance [10, 11] which is written in terms of switch functions for
a class of continuous models.

2 Model and the Main Results

Consider a two-dimensional electron system with Anderson-type impurities in a uniform
magnetic field (0, 0, B) perpendicular to the x—y plane in which the electron is confined.
For simplicity we assume that the electron does not have the spin degrees of freedom. The
Hamiltonian is given by

H,=Hy+V, 2.1)

3Ina generic, realistic situation that there exist one- or two-dimensional objects such as dislocations in crys-
tals and interfaces in semiconductors, we cannot expect that the system has translation ergodicity.

@ Springer



846 T. Koma

with the unperturbed Hamiltonian,

1
Hy = (P +eA)* + Vp, (2.2)
2m,
and with a random potential V,,, where p := —i2V with the Planck constant A, and —e

and m, are, respectively, the charge of electron and the mass of electron; A and V, are,
respectively, a vector potential and an electrostatic potential. The system is defined on a
rectangular box

A :=[—-L,/2,L,/21 x[-Ly/2,Ly/2] C R? (2.3)

with the periodic boundary conditions. The vector potential A = (A, A,) consists of two
parts as A = Ap + Ay, where A (r) = (— By, 0) which gives the uniform magnetic field and
the vector potential Ap satisfies the periodic boundary condition,

Ap(x + Ly, y) =Ap(x, y + Ly) = Ap(x, y). (2.4)

This condition for Ap implies that the corresponding magnetic flux piercing the rectangular
box A%* is vanishing. Therefore the total magnetic flux is given by BL, L, from the vector
potential Ay only. We assume that the components of the vector potential Ap are continu-
ously differentiable on R?. Further we assume that the electrostatic potential V, satisfies the
periodic boundary condition,

Vo(x + Ly, y) = Volx,y + Ly) = Vo(x, y), (2.5)

and ||V0+||Oo + IV llee < vo < 00 with some positive constant vy which is independent of
the system sizes L., L,. Here VOi = max{%Vp, 0}. As a random potential V,,, we consider
an Anderson-type impurity potential,

Vo) =) ha(@)u(r —2), (2.6)

zel.2

for r := (x, y) € R?. The constants {A,(w) | z € L?} form a family of independent, identi-
cally distributed random variables on the two-dimensional triangular lattice L?> C R? with
the lattice constant ¢ > 0. The common distribution of the random variables has a density
g > 0 which has compact support, i.e., SUpp g C [Amin, Amax] With Apnin < 0 < Anpax. Further
the density g satisfies the following conditions:

At
geL®R)NCMR) and / g)dAr > 1/2 2.7)

A

with two positive numbers A and A_. We consider two cases: (i) a small A_ and (ii) a small
A. We assume that the condition (2.7) holds for both of the two cases. If the density g is an
even function of A and is concentrated near A = 0, this requirement holds. We take

L?={z=ma, +na, | (m,n) € Z*} (2.8)

with the two primitive translation vectors, a; = (a,0) and a, = (a/2, V3a /2). The triangu-
lar lattice is embedded in R? such that each face is an equilateral triangle as described in
Fig. 1. We also consider its dual, hexagonal lattice which is defined as follows. Choose a
vertex of the dual lattice at the center of gravity of each triangle, i.e., the intersection of the
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Fig. 1 The parallelogram in the AR I S LTI RIS R
triangular lattice with its dual,
hexagonal lattice

bisectors of the sides of the triangle. For the edges of the dual lattice, take the line segments
along these same bisectors, and connecting the centers of gravity of adjacent triangles.

We assume that the bump u of the single-site potential in (2.6) satisfies the following
conditions: 0 < u € L*(R?),

u(r)=0 for |r| > r, with a constant r, € (v/3a/3,v/3a/2), (2.9)
and

u(r) >up >0 forr in the face of the hexagon
with the center r = 0 of gravity. (2.10)

Here u is a positive constant. The first condition (2.9) implies that the single-site potentials
u has compact support, and overlap with only nearest neighbor u. The next condition (2.10)
implies that the whole space R? is covered by the supports of the bumps {u(- — z)},c;2 of
the impurities so that

Y u(r—2z)>u, foranyreR’ (2.11)
zel?
We should remark that this “covering condition” is needed for estimating the number of
the localized states and for applying the fractional moment method [32], which yields a
decaying bound for the resolvent.
Clearly the random potential V,, of (2.6) does not necessarily satisfy the periodic bound-
ary condition,

Vo(x + Ly, y)ZVw(X,)"f‘Ly):Vw(X, }’)’ (212)

without a special relation between the lattice constant a and the system sizes L, L. There-
fore we will replace the random potential V,, with V,, which is slightly different from V,, in a
neighborhood of the boundaries so that V,, satisfies the periodic boundary condition (2.12).
Before proceeding further, we check that the boundary effect due to this procedure is almost
negligible and does not affect the following argument. Write

LY/2=N,a and L}/2=N,- V3a/2  with positive integers N,, N,. (2.13)

When we take the sizes to be L, = L and L, = Lf, the periodic boundary condition is
automatically satisfied without replacing the random potential. However, for a given lattice
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constant a, the sizes do not necessarily satisfy the flux quantization condition, L}L} =
27t M €%, which we need in the following argument. Here M is a positive integer, and £3 is
the so-called magnetic length defined as £ := +/h/(eB). In a generic situation, we have

ZHMK% < Lfo, <2m (M + I)EZB with some positive integer M. (2.14)

In order to recover the flux quantization condition, we change the size a little bit in the y
direction. Namely we choose the sizes as L, = L)]: and L, = Lff — 8L, with a small §L,.
Substituting this into L, L, =27 M Eé, we have

0<38L, <2mwly/L,. (2.15)

Notice L, < Li’., and consider the triangles which overlap with the upper boundary of A5,

We replace these equilateral triangles with the isosceles triangles of the height (+/3a /2 —
8L,). From the above bound (2.15) for § L, the height of the isosceles triangles is slightly
shorter than the height /3a/2 of the equilateral triangles for a sufficiently large L,. In
the same way as in (2.6), we put the impurity potentials on the center of the gravity of
the isosceles triangles. Because of the bound (2.15) for L, the effect of this procedure is
negligibly small for a sufficiently large size L,. When the boundary effect plays an essential
role as in Sect. 9 below, we denote by f/w, 4 this resulting random potential for a region A.
Otherwise, we will often use the same notation V,, for short.

When Ap = 0, we require the differentiability, V = V;+ V,, € C2, in addition to the above
conditions, in order to obtain the exponential decay bound for the resolvent (H,, — z)~! in
Appendix D.2.

As mentioned above, we require the flux quantization condition, L, L, =27 M 6%, with
a sufficiently large positive integer M. The number M is exactly equal to the number of
the states in a single Landau level of the single-electron Hamiltonian in the simple uniform
magnetic field with no electrostatic potential. This condition L, L, = 27 M €3 for the sizes
L, L, is convenient for imposing the following periodic boundary conditions: For an elec-
tron wavefunction ¢, we impose periodic boundary conditions,

1(L)pr) =) and 1Y(L)e(r) = (), (2.16)

where ¢ (---) and t© (- - -) are magnetic translation operators [33, 34] defined as

1@ fo,y) = flxe—x',y),

/ o / 2.17)
tD0) f(x,y) =expliyx /L1 f(x,y — ')

for a function f on R2.
In order to measure the conductance, we introduce the time-dependent vector field
Aex (1) = (0, (1)) with
e, 1<0;
a(t)y=—Ft X (2.18)
1, t>0.
Here F is the strength of the electric field, and n > 0 is a small adiabatic parameter. The
y-component of the corresponding external electric field is given by

F(l1+nt)e™, t<0;

el
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The time-dependent Hamiltonian is given by

1

Ho(t) =3 - [P+ eA + eAu()]* + Vo + V. (2.20)
The velocity operator is

v(t) = (ue(®), vy (1) = mie[p + eA 4 eA(1)]. (2.21)
Let U(t, tp) be the time evolution operator. We choose the initial time t =y = —T with a

large T > 0. Then the total current density is given by

R N e “"L
xlboy

TeU (@, to)v()U (t,10) Pe fort >0, (2.22)

where Pr is the projection on energies smaller than the Fermi energy Er. This total current
density is decomposed into [8] the initial current density j, and the induced current density
Jina(®) as jior(t) = Jo + jina(?). Here the initial current density jo is given by

1
- Tr— A]Pr. 2.23
L.L, rme[p+e 1Pr (2.23)

Jo=
Further the induced current density jina(¢) is decomposed into the linear part and the nonlin-
ear part in the strength F as

jind(l) = (Utot.xy(t)v O'tot,yy(t))F +j;nd(t) with j;nd(t) = O(F)v (224)

where the coefficients, oy sy (¢) for s = x, y, of the linear term are the total conductance
which are written

Otot,sy (t) = Oyy + Basy(t) (225)

with the small corrections, 8oy, (f), due to the initial adiabatic process, and o(F) denotes a
quantity g satisfying ¢/ F — 0 as F' — 0. Since the present system has no electron-electron
interaction, the order estimate for the nonlinear part j; ,(¢) in (2.24) holds also in the infinite
volume limit [8, 9, 35] with the same form of the linear part of the induced current. But
the nonlinear part j/ ,(f) depends on the adiabatic parameters n and 7. Therefore we cannot
take the adiabatic limit 7 4 oo and # | O for the nonlinear part j; ,(¢) of the induced current.
Now we describe our main theorems. Let v = N /M be the filling factor of the electrons
for a finite volume, where N is the number of the electrons, and write w. = eB/m, for the
cyclotron frequency. Consider first the case with Ap = 0 in the infinite volume limit.

Theorem 2.1 Assume that the filling factor v satisfies n — 1 < v < n with a positive in-
teger n. Then there exist positive constants, By(n) and vy, such that there appear local-
ized states of the bulk order around the energy £,—1 = (n — 1/2)hw,, i.e., the n-th Landau
band center, for any magnetic field B > By(n) and for any potential Vy € C? satisfying
[| V(;’||00 + IVy lloe < vo. Further, when the Fermi level lies in the localization regime, the
conductances are quantized as

Ogy =—— X

h

oyy =0,

e? { n for the upper localization regime,

(n —1) for the lower localization regime, (2.26)
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and exhibit the plateaus for varying the filling factor. With probability one, there exist pos-
itive constants, C;(w) < 00, j =1,2,3, such that the corrections 80y,(t) due to the initial
adiabatic process satisfy

1805, ()] < [C1(®) + Ca(@)TTe™" + C3(w)n'/3, (2.27)

and that the expectation E[C;] of the positive constants C;(w) is finite for j =1,2,3, i.e.,
E[C;] < co. Here the constant C;(w) itself without the expectation may depend on the ran-
dom event w of the random potential V,,,.

In the case with Ap # 0 in the infinite volume limit, we require a strong disorder be-
cause of a technical reason. (See Appendix D for details.) We take u = hw i with a fixed,
dimensionless function & for the random potential V,, of (2.6). This potential behaves as
ll#]|o ~ Const. x B for a large B. For this random potential, we have:

Theorem 2.2 Assume that the filling factor v satisfies n — 1 < v < n. Then there exist
positive constants, By(n), ag(n) and wy, such that there appear localized states of the bulk
order around the energy £,_1 = (n — 1/2)hw, for any magnetic field B > By(n) and for
any vector potential Ap satisfying |||Ap||lee < to(n)B'? and for the function it satisfying
lit]|oo < wo. Further, when the Fermi level lies in the localization regime, the conductances,
oxy and oy, are quantized as in (2.26) and exhibit the plateaus for varying the filling factor.
With probability one, the corrections 80y, (t) due to the initial adiabatic process satisfy a

bound having the same form as that of the bound (2.27).

Remark

1. In the conditions in the first theorem, we can also take u = hw,u for the random potential
with a small norm || || .

2. In the conditions in the second theorem, we can take V,, which behaves as || Vj|lc ~
Const x B for a large B with a small positive constant, instead of a fixed potential V.

3. These two theorems do not necessarily state that both of the upper and lower band edges
exhibit the localized states of the bulk order. Namely a localization region of the bulk
order may appears only at one side for a single Landau band.

4. We do not require the assumption that the n-th Landau band is separated from the rest of
the spectrum by two spectral gaps.

5. In the previous analyses [15-17, 25], they considered the Hamiltonian having the form
with Ap =0 and V;, = 0. The analyses rely on the special properties of the unperturbed
Hamiltonian. For example, they use the explicit forms of the integral kernel of the pro-
jections onto the Landau levels. The extension to the case with Ap # 0 and V) # 0 needs
additional, non-trivial analyses for localization. In addition, we do not require a period-
icity of the potentials Ap, V) with a finite period. Therefore the Hamiltonian H,, does not
need to be translation ergodic.

6. The widths of the plateaus can be estimated as we will show in Sect. 11 below. In partic-
ular, when Ap = 0 and V,; = 0, the ratio of the localized states to the total number M of
the states in the single Landau level tends to one as the strength B of the magnetic field
goes to infinity. This implies that our estimate for the widths of the plateaus shows the
optimal, expected value in this limit.
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3 Spectral Gaps of the Hamiltonian H,

In order to show the localization for the disordered-broadened Landau bands, we first need
to check the condition for the appearance of the spectral gaps in the spectrum of the Hamil-
tonian Hj of (2.2) with a generic, bounded potential V.

First we recall the simplest Landau Hamiltonian for a single electron only in the uniform
magnetic field. The Hamiltonian is given by

1

Hy =
L 2m,

(P + eAo)”. (3.1

We assume that the electron is confined to the same finite rectangular box A®* of (2.3) as the
box for the Hamiltonian H,, of (2.1), and impose the periodic boundary conditions (2.16) for
the wavefunctions with the flux quantization condition L, L, =27 M E%. Then the energy
eigenvalues &, of Hy are given by*

1
&, = (n—l—i)hwc forn=0,1,2,.... (3.2)

The Hamiltonian Hj of (2.2) on the finite box A% is written

1
H() = (p + er + 6Ap)2 + V()
2m,
e e 62 2
= Hp + m Ap'(p+€A0)+ ) (p+€A0)-AP+ ) |Ap|” 4+ Vp. 3.3)

e e e

Using the Schwarz inequality, one has

|V, Ap - (p+ eA))¥)| =< [[|Apllloov/ (¥, (P + €A0)* V) (3.4)

for the normalized vector ¥ in the domain of the Hamiltonian. From this inequality, the
energy expectation can be evaluated as

Holr) < (v, H V2 A H A + [V 35
(¥, Hoyr) < (Y, L¢)+ﬁlll plllocv/ (¥, Llﬁ)-i-zmelll Pl +11Vy lle  (3.5)
and
V2e _
(Y, Hoy) = (Y, HLY) — WlllAplllwv W, HoY) — Vg lloos (3.6)

lower edges of the n + 1-th Landau band which is broadened by the potentials Vj and Ap.
From the standard argument about the min-max principle,’ one has

where VOi = max{%V;, 0}. Let us denote by S:fife and £ respectively, the upper and

«/Ee 62
Sk <&+ N APl loov/E + . HAPIIZ, + Vo lloo (3.7

4See, for example, Refs. [6, 36].
5See, for example, Sect. XIII.1 of the book [27] by M. Reed and B. Simon.
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forn=0,1,2,.... For the lower edge, we assume

e
2m,

Then the right-hand side of the bound (3.6) is a strictly monotone increasing function of the
expectation (Y, Hp.y). Therefore, the same argument yields

1
APl < ihwc. (3.8)

edee V2e _
&%za—vﬁﬂmmmwi—mbm (3.9)

forn =0,1,2,.... If this right-hand side with the index n + 1 is strictly larger than the
right-hand side of (3.7) with the index rn, then there exists a spectral gap above the Landau

band with the index n, i.e., Slfigf_ > S,ff{gf. This gap condition can be written as

V2e e? _
hw. > ﬂ" AR lloo(v/Ens1 +VE) + . HARHZ + 1V oo + 1Vg lloo- (3.10)

Clearly this is stronger than the condition (3.8) for the vector potential Ap. Therefore we
have no need to take into account the condition (3.8).

4 Site Percolation on the Triangular Lattice

The classical motion of the electron is forbidden in the regions that the strength of the
potential is smaller than the deviation of the energy of the electron from the Landau energies
&, of (3.2). In those regions, the Green function of the electron decays exponentially. In
order to get the decay bound for the Green function, we study the distribution of those
classically forbidden regions. We reformulate this problem as a site percolation problem
on the triangular lattice. The idea of using percolation is due to Combes and Hislop [15]
or Wang [16]. But both of their random potentials are different from the present potential
which we require for estimating the number of the localized states.

We begin with setting up site percolation on the triangular lattice L? for the present ran-
dom potential. We say that the site z € L? is occupied if A, (@) € (—A_, A;). The probability
p that a site z is occupied is given by

At
p:/ g\)dx. 4.1

A

The assumption (2.7) implies p > p. = 1/2. Here p, is the critical probability which equals
1/2 for the present site percolation on the triangular lattice [37, 38]. A path of L? is a
sequence zy, Zi, . . . , Z, of sites z; such that all of the adjacent two site z;,z;, are corre-
sponding to a side of a unit triangle. If zy = z,,, then we say that the path is closed, and we
call a closed path a circuit. If all of the site z; of the path are occupied, then we say that
the path is occupied. Similarly we define an unoccupied path, an occupied circuit, etc. We
denote by P,(A) the probability that an event A occurs.

Let I1,  be a parallelogram with the lengths £a, £'a of the sides in the triangular lattice.
See Fig. 1. More precisely, it is given by

Hg'[/ = :mal + na,

£ V4
IMSEJMSEJMMGF} 4.2)
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Here we take ¢, £ even integers for simplicity. Consider the event A, that there exists a
unoccupied path in the parallelogram I1;  joining a site on the lower side with the length
£ to a site on the upper side. Since the connectivity between two sites with an unoccupied
path decays exponentially for p > p,, the probability P, (A ¢.¢) that the event A ¢.¢ occurs is
bounded as

P,(Aq ) < Const x £exp[—m €] for p> p,=1/2, 4.3)

where m, is a positive function of p. Let Ay , be the event that there exists an occupied path
in the parallelogram 1, joining a site on the left side with the length ¢’ to a site on the
right side. Then this event A, , is the complementary event of A, because of the structure
of the triangular lattice. Immediately,

Py(Ap )+ Pp(Ape) =1. 4.4)
Combining this with the above inequality, one has
P,(Ayp ) > 1—Const x £Lexp[—m,¢'] for p> p.=1/2. 4.5)
Consider a parallelogram-shaped region consisting of hexagons such that

AF @) = | harw (4.6)

z€lly o

where &, is the region of the face of the hexagon with the center z, including the six sides

of the hexagon, and z, is the center of the region A‘ﬁi ¢+1(Zo). The region has the jagged

boundary as in Fig. 1. Moreover we define an annular region as

A (20) = A5, (20)\ A}y (20), 4.7)

where both ¢ and £ take an odd integer.

Let us consider the event Dy in A3}, (2o) N L? that there exists an occupied circuit C
para

encircling the inside region A, (z). Then, from the inequality (4.5) and FKG inequality,’
the probability P,(Dy ) for this event satisfies

Py(De.¢) > [Py(Ap 30 P[Py(Ag3e)
> 1— Const x {£exp[—m '] + £ exp[—m L]}
for p > p.=1/2. (4.8)
Therefore the event of an occupied circuit occurs with the probability nearly equal to one
for large ¢, £'.
We denote by b; ;4 the side Z;z; 1 of a unit triangle, i.e.,

bj,j-H = {l' = )\Zj + (1 — }‘)Z./‘H'}" S [O, 1]} (49)

We define the region R ; ;1 including the side b; ;1 as

3
Rj j+1 = {r|dist(r,b; j11) <7} withr = %a — Iy, (4.10)

f’See, for example, the book [38].
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where r, is given in the condition (2.9) for the bump u. Further we define the ribbon region
R associated a circuit C by

Re= () Rjju- (4.11)

bj j+1€C
Clearly r is strictly positive from the condition r, € (+/3a /3, V3a /2) of (2.9), and the

ribbon region R¢ has a nonzero width 2r.

Proposition 4.1 There appears an occupied circuit C in the annular region A3}, (zo) with
a probability larger than

PP =1 — CP"{Lexp[—m '] + £ exp[—m L]}, (4.12)

where CP%° is the positive constant in the right-hand side of the above bound (4.8), and p >
pe = 1/2 is given by (4.1). Further the following hold for the ribbon region R associated
with the occupied circuit C:

3
dist(R¢, 0. A5 %y (20)) =1y, — %a =:r>0 4.13)
and
—A_u; <V,(r) <iiu; forreRec. 4.14)
Here aAg‘X‘;e, (z0) is the boundary of the annular region Ag‘z%”l, (29), and uy :=2||u| 0o-

Proof The lower bound (4.12) of the probability is nothing but the right-hand side of (4.8).
The positivity (4.13) of r, follows from the condition (2.9) of the bump u of the random
potential V,,, and the bound (4.14) follows from the condition (2.9) and the definition (2.6)
of the random potential V,. 0

5 Initial Decay Estimate for the Resolvent

Now let us estimate the decay of the resolvent (Green function) for a finite parallelogram-
shaped region. The resulting decay bound in Proposition 5.2 below will become the initial
data for the multi-scale analysis to obtain the decay bounds for the resolvent in larger scales
in the next section. However, by using the multi-scale analysis, we cannot get a similar decay
bound for the resolvent for two arbitrary points in the infinite-volume limit. On the other
hand, the fractional moment method leads us to a decay bound for a fractional moment of
the resolvent in the infinite-volume limit. Actually, as we will see in Sect. 7, the initial decay
estimate of this section yields such a decay bound. But the resolvent itself without taking a
fractional moment cannot be evaluated by the method [32]. Due to technical reason related
to these observations, we need both multi-scale analysis and fractional moment analysis, in
order to prove the existence of the conductance plateaus with a bulk order width.

Although the method in this section is basically the same as in the previous papers
[15, 16] as mentioned in the preceding section, we need more detailed analysis about the
magnetic field dependence of the decay bounds, in order to estimate the number of the lo-
calized states which yield the Hall conductance plateau with a bulk order width.

Fix the random variables A,;,, with z € L2\IT3¢_; 3¢—;. Here € and ¢ are odd inte-
gers larger than 1. Consider the parallelogram-shaped region A%, (zo) centered at 7y, and
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assume A%)'3, (zg) C A®® with a sufficiently large box A®* of (2.3). We write Az 3¢ =
A5, (zo) for short. Further we consider the Hamiltonian H,, restricting to the region Az 3
with the Dirichlet boundary conditions. The Hamiltonian is written as

1 N
Hy,, = Z_me(p +eA)’ + Volay, yp + Vosese +8Vosese, (5.1
where we have decomposed the random potential V,, into two parts,

Vosear@® = Y hyyg(@ur—20—2) (52)

2€ll30_ 1301

and 8V, 3030 = Vw|/\3e w \7&34,34/. Clearly, the first part Vw.y.w of the random poten-
tial is determined by only the random variables A,,,,(w) at the sites z + z, lying in the

parallelogram-shaped region Ag?g (2o), and so it is independent of the outside random vari-
ables. Further we have
Z u(r—1z9p—1z)>uy foranyre Aspzp (5.3)

2€ll30_1 30—

from the assumption (2.10). This condition will be useful to obtain the Wegner estimate [39]
for the density of the states. (See Appendix A for the Wegner estimate.)

On the other hand, the random potential 6V,, 3¢ 3¢ which is supported by only the region
near the boundary of Az 3¢, depends on the outside random variables. Following [15], we
absorb this term into the operator W(x) of (5.7) below which will appear in the geometric
resolvent equation. (See Appendix F for details.) Thus we consider the Hamiltonian,

1 A
= E(P +eA) + Volayg s F Vo303 (5.4)

HAamU

without the potential 8V, 3, 3¢, instead of the Hamiltonian H Ay 3 of (5.1).
Assume that the energy E € R satisfies the condition,

E < E <85 < with iy =ul 63

We write the resolvent as Rsy 3¢ = Rapsp(E +ig) = (PAIAM w — E— ie)~! with ¢ € R.
For 6 € (0, ry), consider the region, Agz,w ={re A3L3g’|diyst(l', 0Asp3p) > 8}, where ry
is given by (4.13), and 0 Az, 3¢ is the boundary of the region Az 3,. Let X38/5,3/z’ be a C?,
positive cut-off function which satisfies

X3eselp =1 and supp|Vxd, 5| C Aseze\ A 50 (5.6)

3¢,3¢/

We denote by x.¢ the characteristic function of the region A}/ (zo).
The purpose of this section is to estimate the decay of W ( ng“ ) R3¢.3¢ ¢, Where

W(x) =[(p+eA)?/2m,), x] (5.7)

for a C? function x. Note that
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2

IW (X3 30) Raese xew || < =—1(AXS,30) Raeze xee |

me

h
— 3 X2y 30) (Pi + eAD Rsp 30 xe.erl 5.8
+— D @3 P+ eADRssoxell, (58)

e .
i=x,y

where we have written V = (9,, d,), and used
2

2m,

ih h?
Ax=——Vx-(pteA)—
m, 2m

10
W(X)Z—:n—(p+eA)-Vx+ Ay. (59

We write R for the ribbon region R in Proposition 4.1 for short. Let € be a small positive
number, and let C, := {r € R | dist(r, C) < €/2}, so that the region C, has the width €, where
C is the occupied, closed path in Proposition 4.1. Let x; be a C?, positive cut-off function
satisfying xila,, = 1 and supp |V xi| C C., where we have written A, ¢ for AE?Z’(ZO) for
short. Since we can take yx; to satisfy (9; X38L 43¢) X1 = 0 from the definition of ngm /> one has

(B X3 30)(Pi + €A Rag 30 Xe.0 = DiRse e X1 Xe.0 = —DiR3e 350 W (X1) R3e 30 xe,ers (5.10)

where we have written D; = (0; Xzsz,az')( pi + eA;). In order to estimate this right-hand side,
we define the € border of the ribbon region R by R, := {r € R|dist(r, 9R) < €}, and define
r3 = dist(R.,Cc) > 0. We choose a small parameter € so that the distance r; becomes
strictly positive. Further we introduce two C?2, positive cut-off functions, )27;/ % and X5 which

satisfy the following conditions:

i lRR, =1, supp VLI C Repa (5.11)
and
Xrlr\re =1, Xrlr., =0, and  supp|Vxyz| CR\Rep2. (5.12)

Consider the Hamiltonian,

1

Hyp :=
R 2m,

(p+eA)’ + Vg, (5.13)

on the finite rectangular box A®* of (2.3), where we impose the periodic boundary con-
ditions (2.16) with the flux quantization condition L L, = 2w M {2, and the potential is
given by Vp = )Z;Z(Vo + V,,). Then one has the geometric resolvent equation, Rz 3¢ x5 =
X% Rr — Rag 30 W(x5) R with R := (Hg — E —i€)™!, where we have used )2;/2)(,72 =X
which is easily obtained from the definitions. Using this equation and D; x5 =0, the right-
hand side of (5.10) is written as

—D; R3p 30 W(x1) Rag 30 Xe.o = —Di Rag 30 xo W (X1) R3g 3 Xe,00
= D;Ra; 30 W(xR)Rr W (X1) R3¢, 30 Xe.0r- (5.14)

Consequently, one obtains
D; Ry 30 xe.00 = Di R3¢ 30 W(x2) Rr W (x1) R3e 30 Xe, v - (5.15)
In the same way,

(Axésg,gy)Ru,u’ Xeo = (Axésg,gy)Ru,w W(xz)RrW (x1)R3e 3¢ Xe.er- (5.16)
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If the random potential V,, satisfies the condition (4.14), then the energy E satisfying the
condition (5.5) is in the spectral gap of the Hamiltonian Hx. Therefore we can apply the
Combes-Thomas method [40] to evaluate decay of the resolvent Rx in the right-hand sides
of (5.15) and (5.16). We write A = supp |V x5 | and B = C., and denote by x4 and yxz the
characteristic function of A and B, respectively. The resolvent Ry decays as

I xaRr x5l < CMe P (5.17)

with a probability larger than PP®' of (4.12) in Proposition 4.1, where C l(”) and B are positive
constants. The derivation of this decay bound and the explicit parameter dependence of
C f") and of B for the present model are given in Appendix D. In the application of the
decay bound, we choose the cut-off function x5, so that the region supp |V x% | has a smooth
boundary.

Lemma5.1 Let R = (H, — E —is)~! with generic, bounded potentials Vy, V,, and E, e € R
satisfying E ¢ o (H,) or € #0, and let & = (i, oty) be a vector-valued C' function. Then

lloc - (p + AR <2¢/2m | R|IV*(1 + fr.p)'" max (e oo}, (5.18)
I(pi + eA)R(P + eA) - al| < 2m.[let]lloc(1 + fi.r) (5.19)

and
IR(P+eA) - o] < v2m. |||l |RI'2 (1 + f.0)"/2, (5.20)

where we have written
JEr=MEI+ (Vg + VDlIIR]. (5.21)

The proof is given in Appendix E. From (5.9) and these bounds of Lemma 5.1, one has

IW(xDRze3ell < filEL | R3ezer D), (5.22)
1R3¢30 W(xp) Il < HUEL | R3e 30 1) (5.23)

and
I(pi +eA) Rz 30 W)l < f3UEL I R3e 3¢ 1)), (5.24)

for the operators in the right-hand sides of (5.15) and (5.16), where the functions, f;, f» and
/3, are given by

2

I
HUELIRID =

A R
2 A I IR
2 - - 2172
25| (IR LEL+ 1Yy + Vo) lllIRI)
e
x max (191l ). (5.25)
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FL2
LUEL IR = WIIAX%IIOOIIRII

2
+ hdyﬂ—ﬂlﬂl FUEI+ 1V 4+ VO ledIRIPY 2V x5 oo (5.26)

and

2

I - _
HUELIRID = WIIAX%HO@{IIRII +UEI+ (Ve + Vo)l IRIPY?

+ 2001V xR Mloof1 + HET+ 1(Vy + V) s IIIRI- (5.27)
The norm || R3¢ 3¢ || of the resolvent in these upper bounds can be evaluated by using the

Wegner estimate. See Appendix A for details. From the resulting Theorem A.2, we have
that, for any 6 £ > 0,

| Raes0ll < SBE)™ (5.28)
with a probability larger than
1 — CwK;ligllowd EI AR, (20)], (5.29)

where Cyw is a positive constant, and the positive constant K3 is given by (A.39) in the
theorem.

Proposition 5.2 For any E satisfying the gap condition (5.5), and for any §E > 0, the
following bound is valid:

sup | W (x5 30) Re3e (E + i) xe.e
e#£0

2

R
<CMe P £ (|E, <6E)—1>[ IAX3, 30 lloe LUEL (BE)™)

n,
2h 5 i
+ m_gf);||8iX3L3z/||oof3(|E|v BE)™) (5.30)

with probability at least
P =1 — {CP"{Lexp[—m ,¢'] + £ exp[—m L]} + Cw K| 8llod E| A%, (zo)[}. (5.31)

Proof Combining (5.15), (5.16), (5.17), (5.22), (5.23), (5.24) and (5.28), the right-hand side
of (5.8) is estimated. Using (4.12), (5.29) and the inequality Prob(A N B) > Prob(A) +
Prob(B) — 1, the probability is estimated. 0

Since we can take the ribbon region R satisfying supp§V,, ¢3¢ MR C dR, we can obtain
a similar bound for (|8 V,, 3¢.3¢ R3¢, 3¢ (E +i€) xe.¢ || to (5.30). Fix the ratio £’ /£. For simplicity
we take ¢’ = £. Fix & > 4. We choose £ = £ to satisfy

2CP Ly exp[—m L] < 655/2, (5.32)
and choose S E in (5.28) so that

CwK3lglld El Ay, (20)| = £5° /2. (5.33)
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Clearly these implies P™ > 1 — £,°. Therefore, if we can find a large § in (5.30) so that the
right-hand side of (5.30) with £ = £’ = ¢, becomes small, then we have

Prob| sup | W, Rseg st (E + &) xeq 0| < €700 | = 1= £5° (5.34)
e#0

with some yy > 0, where VV?Z = W(ngz,ﬁ) — 6Vw,3£,3£X§[,3[-
For the norm || x¢ ¢ R3¢30 (E + is)W(Xése,%,)H, one can obtain a similar bound to (5.30)
in the same way. As a result, we have

Prob[sup 1, Raco.seg (E +i8) (Wi )"l < €700 | = 1= 5 (5.35)
£#0

under the same assumption.

Let us study the condition which realizes such a large . Consider first the case with
Ap =0, and fix the size £ = £, of the box to satisfy the condition (5.32). Further, fix A > 0
and 8, > 0. Assume that the energy E € R satisfies

Enct + Vg oo + hstty +8_hoe < E < & — Vg lloo — Aty — AE (5.36)

or
gn + ||V0+||Oo + )\+u1 + A& = E < Sll+1 - ”V(;HOO - )\—ul - 28+hwcv (537)
where £_; = —oo. We call the energy interval satisfying the condition (5.36) the lower

localization regime around the band center &,, and call the interval for the condition (5.37)
the upper localization regime. These conditions imply that we cannot treat the energy E near
the Landau level &,. From the assumption Ap = 0, we have

£ <&+ 1V loor and £ > &, — 1Vy lloo- (5.38)

From these bounds, one has

E  hpuy + 6w, < E < £ —h_uy — AE (5.39)
or
E i +AE S E <& —A_uy — 28, ho, (5.40)

and so the energy E satisfies the condition (5.5). Since the random potential V,, satisfies the
condition (4.14) on the ribbon region R, the energy E satisfies the condition in Theorem D.7
as

Ent + 1 (Vo + Vi) oo +6-hwe < E <& — |(Vo+ Vi) lloo — AE (5.41)
or
Ent IV + V) Tlloo + AE S E < Eupt — 1(Vo + Vi) lloo — 284 heoe. (542

As a result, we can take 8 = %,£;' o< +/B for B > B(({’l), and the constant C{") in (5.30) is
independent of B. Here &, and Béf',) are positive constants which depend only on the index
n of the Landau level.

On the other hand, one can choose 8 E to satisfy (§E)~! ~ Const x B for a large B from
the condition (5.33) and K3 ~ Const x B for a large B. The asymptotic behavior of K3 is

@ Springer



860 T. Koma

easily derived from the expression (A.39). See the remark below Theorem A.2. Combining
these observations with the bound (5.30), we reach the result that there exists a large, positive
B!" such that the statement (5.34) holds for all B > B{" . The positive constant B\" depends
only on the index n of the Landau level.

We have fixed the size £ of the box to £ = £ at the first, and chosen a large strength B of
the magnetic field. However, fixing the initial size of the box is not convenient for applying
the multi-scale analysis to the present system. In fact, we must choose a sufficiently large
£y for the initial size to satisfy a certain condition which depends on the strength B of the
magnetic field in the analysis. Clearly, changing the initial size ¢, to a larger value is not
allowed for a fixed B because the right-hand side of the bound (5.30) depends on the size £,
of the box through (§E)~" 68”. In order to avoid this technical difficulty, we take ¢, to
be a function of B as

€o=Lo(B) = Loly/ B/BY” 1505 (5.43)

where [x]3;, denotes the largest odd integer which is smaller than or equal to x, and BZO’) is
the lower bound for the strength B of the magnetic field which is determined in the above;
the odd integer £, is chosen so that ZO(BZ(")) satisfies the condition (5.32).

From the definition (5.43) and 8 = E,lﬂg', one has

e P <o 70"t (5.44)

with )70(") = /an3/(£3(n)fo). Using this, (5.43) and (§E)~' ~ Const x BZE+2 for a large B,
2
the right-hand side of the bound (5.30) is bounded from above by

S (n) ~(n
CeF e 0 = exp[—{7" — (log ) /€y — (2€ + 11)(log €9) /€0 } o] (5.45)

for a large B. Here C is the positive constant. Thus there exists a large, positive B(()") such
that the statement (5.34) holds for any B > B{"’. The positive constant B{" depends only on

the index n of the Landau level. In addition to this, we can choose the constant yy = yo(") SO

that " is independent of B and of the initial size £y = £o(B). Actually y," depends only
on the index n of the Landau level.

Next consider the case with Ap # 0. In this case, we also take £y = £o(B) of (5.43). The
decay bound (D.85) for the resolvent in Theorem D.7 was the key to the above argument.
However, for Ap # 0, we must rely on the different, weaker bound (D.25) in Theorem D.2.
In fact, we cannot obtain a similar bound to (D.85) because of a technical reason. To begin
with, let us see the difference between the two bounds. Let E be the energy in the spectrum
o (H,) of the Hamiltonian H, of the whole system, and let o (Hz) be the spectrum of the
Hamiltonian Hy of (5.13) having the local potential V; supported by the ribbon region R.
Then the distance between E and o (Hy) is at most of order of ||V, ||~. Namely,

dist(o (Hr), E) =min{|Ey — E[, |E — E_[} < | Vo lco. (5.46)

where (E_, E) is the spectral gap of Hr. Substituting this into the expression (D.24) of
in the bound (D.25) for the resolvent, we have that the parameter § is at most of O(1) for
a large strength B of the magnetic field. Thus we cannot realize a large § by taking only a
large B.

In order to realize a large B, we require a strong disorder, together with the strong mag-
netic field. To this end, we take u = hw. i with a fixed, dimensionless function # for the
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rfmdom potential V,, of (2.6), and choose Cy = hw, (:’o with a fixed, dimensionless constant
Cy as the constant in (D.6). Fix § > 0. Assume that the energy E satisfies

&%+ hod_ <E <& —hod,, (5.47)
where
e (] \/—
E% =&+ ~=lArlllocvE: +5— |||Ap||| Vo lloo +Asu;  (5.48)
o
and
~ V2e -
E =i — s Enr1 — 1Vg oo — Aui. (5.49)

The condition (5.47) implies that we cannot treat the energy E in the interval [£5%%° —

hwc&r, Sedge + hwc(S ] near the Landau level &,. From (3.7), (3.9) and (4.14), we have

E-<&% 4 <& and E, > —hu =& . (5.50)

Therefore we obtain £, — E > hwc(§+ and £ — E_ > hwfg_. Substituting these into the
expression (D.24) of 8, we have

B> Zme\/ (hwc)3C08+8: __ 0B
h N Co(E—E_)+16(E, + Co)(E_ + Cp)
for a large B, (5.51)

where we have used Cy = hwcé‘o with a fixed constant C’o. In this case, one can easily
have K3 = O(1) for a large B, from (A.3), (A.4), (A.7), (A.25) and (A.39). Therefore we
can choose (§E)~! ~ Const x E(&)H to satisfy the condition (5.33). Consequently the same
statement (5.34) holds for a strong magnetic field and for a strong potential u = O(B).

6 Multi-Scale Analysis

Starting from the initial decay estimates (5.34) and (5.35) for the resolvent, we derive similar
estimates for larger scales without losing too much. The main results of this section are given
in Lemmas 6.2 and 6.3 below. The proofs are given in Appendix F. We stress again that
these results for large but finite volumes never yield a similar decay bound for two arbitrary
points in the whole plane R?. As to the resolvent in the infinite volume, we will rely on
the fractional moment method in the next section. The multi-scale analysis given here is a
simplified version [31, 41, 42] of [29]. Although the method itself is well known, we must
carefully handle the magnetic field dependence of the decay bound for the resolvent again.

Let £ be an odd integer larger than 1, and denote by A,(z) = A}, (z) the parallelogram
box with sidelength £ and with center z € I', := ¢L? = {mfa, + nfa, | m, n € Z}. The dis-
tance between two lattice sites in I is defined by |z| = max{|m|¢, |n|¢}. Fix a small § > 0.
Let x¢(z) be the characteristic function of the region A,(z), and let X36z (z) be a C3, positive
cut-off function satisfying

K@ s =1, and  supp|Vxd, @) C Az @)\ A, (@), 6.1)
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where Agz (z) ;= {r € Az,(z)|dist(r, 0 A3.(z) > §}. We write

Ry (E+ig) = (Hayw — E —ie)™",
) (6.2)
W2, (2) = W (X3, (2) — 8Vi 3030 X5 (2).

Here the Hamiltonian H A2 18 given by (5.4).

Definition 6.1 A parallelogram box Aj3,(z) is called y-good for some y > 0 if the following
two bounds hold:

sup || W3, (2) Rye o (E +ie) xe(@)|| < e (6.3)
e#0
and
Sup || x¢ () Rag o (E + ie) (W3, (2)*|| < e77*. (6.4)
e#£0

Remark The probability Prob[ Az (z) is y-good] is independent of the center z.

Lemma 6.2 Let £, ¢’ be odd integers larger than 1 such that £ is a multiple of £ and satisfies
0’ > 4L. Assume Prob[ Az (- --) is y-good] > 1 — n with a small n > 0. Then

Prob[ Az (---) is y'-good] = 1 — 1/ (6.5)
with
n'=/0M + )2 (6.6)
and with
Y =yl —4£/0) — £ log(coK2|E|) — (€)' (25 + 7)log . (6.7)

Here c is a positive constant.

We define a sequence of monotone increasing length scales £, as
1/24>
L1 =465y fork=0,1,2,..., (6.8)

where [x]gdd denotes the smallest odd integer which is larger than or equal to x. Clearly we
have ;| > 62/ ? and L1 > 4L, for all k if the initial scale ¢, is large enough.

Lemma 6.3 Take £y, = €y(B) which is given by (5.43), i.e., the function of the strength B of
the magnetic field. Then there exists a minimum strength By > 0 of the magnetic field such
that

Prob[ A3, (- ++) is Yeo-g00d] > 1 — (€)% (6.9)

with some y», > 0 for any B > By and for any k.
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7 Fractional Moment Bound for the Resolvent

As mentioned at the beginning of the preceding section, the multi-scale analysis has the
disadvantage for the decay estimate of the resolvent in the infinite volume. In order to com-
pensate for the disadvantage, we rely on the fractional moment method. The key points
of the method are that the fractional moment of the resolvent is finite due to the resonance-
diffusing effect of the disorder, and satisfies a “correlation inequality” [32]. But the resolevnt
itself without taking the fractional moment cannot be evaluated by the method, as we already
mentioned above. The aim of this section is to obtain the decay bound (7.1) below for the
fractional moment of the resolvent for the present system, following Ref. [32]. Further, the
decay bound (7.1) so obtained yields the decay bound (7.17) below for the Fermi sea pro-
jection Pg. In the article [32], the authors showed that a decay estimate of a resolvent in the
multiscale analysis yields a fractional moment bound for the resolvent. In this section, we
obtain the fractional moment bound more directly from the initial decay estimate which was
studied in Sect. 5. Actually, the initial decay estimate was the initial data for the multi-scale
analysis in Sect. 6.

Consider the present system described by the Hamiltonian H,, with the random potential
V,, on a finite region A or the infinite plane R?. Let x 4, x5 be the characteristic functions
of the sets A, B with a compact support, respectively. Then the fractional moment bound for
the resolvent is

supE||x4(Er +ie — H,)"' x5lI* < Const x e™*", (7.1)
e£0

where E is the expectation with respect to the random variables of the potential V,, s €
(0, 1/3), u is a positive constant, and we have written r = dist(A, B).

We denote by s,(u) the square box centered at u = (uy, u,) € R? with the sidelength ¢,
ie., se(u) ={r=(x,y) € R?|max{|x — u;|, |y — us|} < £/2}. Consider the Hamiltonian

1
Hyp =5 —(+ eA) + (Vo + Vi) ls, o) (7.2)

on the square region s; (zy) centered at zy € L? with the sidelength L, where we impose the
Dirichlet boundary conditions, and write the resolvent as

Ry =RL(E+ig)=(Hy, @ — E —ie)” (7.3)

for E,e¢ € R. We write xz(z) for the characteristic function of the square box s;(z) with
the sidelength 7 := ﬁa/2 for z € L2. Let § A7 (29) = s1._37(2Z0)\S1—237(2Zo), and let Z' €
8 Ay (29) NL2. In order to obtain the fractional moment bound for the resolvent, we want to
evaluate

Si[gE[”XF(Z,)RL(E +ie)x#(2o) '] fors €(0,1/3). (7.4)

In the same way as in Sect. 4, one can find a ribbon region R such that the conditions
(4.10) and (4.14) are satisfied with probability larger than

PPt =1 — CPLe~"rL  with two positive constants, CP*™ and mp, (7.5)
and that the ribbon R encircles the square box s;7(zp), and that the following two conditions

are satisfied: dist(R, s7(2g)) > 0 and dist(R, s;(z')) > 0 for all z’ € §.A; (zy) N L2. Further,
we can find a C2, positive cut-off function x; such that yx, ls;z) = 1 and supp [V x| C Ce,
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where the region C. near the center C of the ribbon R is the same as in Sect. 4. Since we can
choose x; so that y7(z') x; =0, we have

X7 @) Rp x7(zo) = x#(2 )R x1 X7 (20) = X7 ()R W (x1) Rr X7 (20). (7.6)

In the same way as in Sect. 4, we can take the C 2 positive cut-off function x5, and the
resolvent Ry for the Hamiltonian Hy . Therefore the right-hand side can be further written
as

X7 (@) Ry xi (o) = x#(@)RLW (x1) R X7 (20)
= x#(Z) R xx W (x1) Re X7 (20)
= —x#(Z)RLW (xz)Rr W (x1) Ry xi (20), (7.7)

where we have used x%|r\r. = 1, x7(Zo) xz = 0 and the geometric resolvent equation,
Rixr = XrRr — R W(x5%)Rz. Using the bounds (5.22) and (5.23) for the resolvent R,
instead of Rz, 3¢, We obtain

X7 (Z)Re x7 Zo) |l < I x# (Z)RLW (x) xARR X8 W (x1) Rp X7 (20) |
SNRLW O M xaR= x5 IIW (xR
< AUELNRLD LUEL IRLIDI xaRR x5l (7.8)

where A =supp |V x% | and B=C. D supp |V xi|. In the same way as in Sect. 4, we have
IxaRrxsl < CMe " (7.9)

with probability larger than (1 — CP**Le~"rL), where C f") and B are the corresponding
positive constants. By using the Wegner estimate, the norm of the resolvent can be also
evaluated as ||R; || < (§E)~" with probability larger than (1 — Cy ||glloc8 EL?). We choose
L to satisfy

P Lo~k < (L/a)™% )2 (7.10)
with a positive number é which we will determine below, and choose § E so that
Cwligllwd EL? = (L/a)~¢ /2. (7.11)
Then we have

Il %7 @) R x720) | < C\” AIUE], BE) ) L(IE|, BE) e P73 (7.12)

with probability larger than (1 — (L /a)*g ). We denote by D, the set of the events w satis-
fying the above inequality (7.12). Note that

E[ll X7 @) Re X7 (20) II'] < E[ll X7 () Re X7 (20) |I'T(D1)]
+ Elll x7(2) Re x7 (20) II'L(DY)]1, (7.13)

where I(A) is the indicator function of an event A. The first term in the right-hand side is
estimated as

Elllx: () Rex (20) I'UDL)] < [C{” AUEL, BE)™) A(E], GE) HI'e™.  (7.14)
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Using the Holder inequality with s < ¢ < 1, the second term is estimated as

E[l| X7 (2) Rp. X7 (20) I'L(D])] < ELll x7(2) Re x5 (20) II'T E[L(DY)]' /"

< Const x B® x (L/a)~(—5/D%, (1.15)

where B is the strength of the magnetic field, and we have used the fractional moment
bound (3.19) in [32], and E[I(D])] < (L/a)‘g. The factor B* comes from a careful but
easy calculation in the fractional moment bound. The positive constant depends only on the
index of the Landau level in the condition (5.5) for the energy E.

We take L to be a function of B as L = L(B) = Const x B'/2. Then the argument of
Sect. 5 yields Br; = Const x B'/2. We choose ¢ and £ to satisfy (1 — s/t)é > 3+ 12s.
Combining these, (7.13), (7.14) and (7.15), we obtain that the quantity,

B> L*supE[|l x; (@) R, (E + i) x7 (z)|I'], (7.16)
e#£0

becomes small for a sufficiently large B of the strength of the magnetic field. This implies
that the finite-volume criteria’ of Theorem 1.2 in [32] is satisfied for magnetic fields whose
strength B is larger than a positive By. The factor B> comes from the B-dependence of the
constant in (1.18) of the criteria. Thus the fractional moment bound (7.1) for the resolvent
holds for such a large magnetic field.

Let Pr be the projection on energies smaller than the Fermi energy Eg, and let x 4, x5
be the characteristic functions of the sets .A, B with a compact support, respectively. The
following Lemma 7.1 is due to [32]. In order to make the paper self-contained, we give a
proof which is slightly different from that in [32].

Lemma 7.1 The following bound holds:

E| x4 Prxsll < Const x exp[—pudist(A, B)]. (7.17)

Proof Write R(z) = (z — H,)~'. Using the contour integral, one has

Er

1 . [ :
XAPrxs = =— dEXAR(E +iy_)xs + —/ idyxaR(Eg +iy)xs
2wi JE, 2mi J,_

1 [Fo

. | Y .
+ I AdEXAR(E +iy)xs+ z— / idyxaR(Eo+iy)xs, (7.18)
i J g 2mi Jy,

where E| is a real constant satisfying H, > E,. The integral near the Fermi energy is jus-
tified because the operator norm limit, lim, o x 4 R(E Fi€) x5, exists [32, 42, 43] almost
surely for almost every energy E € R. We can choose finite Ey and y4 so that

IxaR(Eo+iy)xsl < Const x e #" for any real y (7.19)

and

IxaR(E +iy+)xsl <Const x e *" for E € [Ey, EF] (7.20)

7We should remark the following: The condition z’ € 8.4 (zg) N L2 is slightly different from that in Theo-
rem 1.2 of [32]. In fact, our argument relies on Lemma 4.1 of [32].
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with the same decay constant p. See Appendix D.1 for details. Therefore it is enough to
evaluate the second integral in the right-hand side of (7.18). It is written

liminf / dy AR (Er + )15, (7.21)
1(ey)

en—0

where {¢,}, is a decreasing sequence, and we have written [ (¢,) = [y—, y+]1\(—¢&y, €,). Us-
ing Fatou’s lemma, we have

<liminfE

en—0

E‘ . (7.22)

y+

/ dyxaR(Er+iy)xs / dyxaR(Er+iy)xs
y— I(en)

This right-hand side is evaluated as

E

/ dyxaR(Ep+iy)xs
I(en)
sE/ Ayl xaAR(Er + i) x5
I(ep)
EE/ dylxaR(Er +iy) x5’ xaR(Er +iy) xsl'™
I(en)

< E/ dylxaR(Ep +iy)xsl’lyl*™
I(en)
< Const X s (|y4|* + |y_|")e ™, (7.23)

where we have used Fubini-Tonelli theorem and the decay bound (7.1) for the resolvent.
This yields the desired result. 0

8 Finite Volume Hall Conductance

We recall the previous results of the linear response coefficients [8]. The total conductance
for finite volume and for ¢ > 0 is written

Oy + Vuy -t + 80,,(¢), fors=x;
Gionsy (1) = xy T Vxy xy S0
Vyy 't+50'yy(t)» fOIS:y,

Our goal is to give the proof of all the statements of Theorems 2.1 and 2.2. Namely, when
the Fermi level lies in the localization regime, the Hall conductance o, is quantized to the
integer as in (2.26), and both of the acceleration coefficients y;, vanish, and the corrections
80y, (¢) due to the initial adiabatic process are small as in the bound (2.27). For this purpose,
we first treat the Hall conductance o,,, and prepare some technical lemmas for the Hall
conductance oy, for finite volume in this section.
In the following, we write A = A%* for short. The explicit form of the Hall conductance
oy for the finite region A is given by [8]
ihe?
UX}’ = _ﬁ Tr PF,A[Px.Aa Py,A]7 (82)

xtey
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where Pr 4 is the corresponding Fermi sea projection and
1
Pia= —,fdzRA(z)vSRA(z) fors=x,y. (8.3)
2wi J,

Here vy are the velocity operators, i.e., (v, vy) = v(t =0) for v(¢) of (2.21), and Ry = (z —
H, 4)~" with the finite-volume Hamiltonian H, s with the periodic boundary conditions;
the closed path y encircles the energy eigenvalues below the Fermi level Eg.

Take two rectangular regions §2 and A’ so that the following conditions are satisfied:

QcAcCA, dist(£2,0A") =8L/2 and dist(A’,0A) =8L/2, (8.4)

where we have taken the width §L of the boundary regions as 6L = a(L/a)“ with k €
(1/2,1) and with L = max{L,, L,}. Here a is the lattice constant of the triangular lattice
L. Clearly we can take 2 satisfying |£2| = O(L?) and |A\£2| = O(LSL). We decompose
0,y into two parts as o, = 0, + o with

e e PealPon, P 8.5
gxy_—Lx—L t X2 Pe alPr,as Py alxe 8.5
y
and
out ih62 c c
o == TrxG PralPeas PoalXi: 86)
x =y

where g, is the characteristic function of §2, and x5 =1 — x. We choose k so that
8ra <S5L < 8y41a, (8.7)

where ¢, is a length scale in the sequence {¢; }; which is determined by the recursive equa-
tion (6.8).

Lemma 8.1 Let A, B be subsets of A. If dist(A, B) > Tra /2, then the following bound is
valid:

I xaRA(2) x5l < Const x LG~ exp[— 100 L*/°] (8.3)
with probability larger than (1 — Const x L™2€E+2=313) ywhere y 4, xg are, respectively,

the characteristic functions of A, B, and | is a positive constant.

Proof In order to prove the statement of Lemma 8.1, we rely on the argument of the
multiscale analysis in Sect. 6. Therefore we use the same notations, A,(z), x,(z), Xfe (z),
etc. From the assumption dist(.4, B) > 7¢;a/2, there is a sublattice Lz of £, L2 such that
BC UueLB Ayg, (w) and that dist(A, Az, (w)) > 0 for all u € L. Using the adjoint of the
geometric resolvent equation,

RA@) X, W) = X3, (W Rsg w(2) + Ra(2) (Wi, (W) R, u(2), (8.9)

we have

XARA(2) X, (W) = XAX?ek (W) R3g,,u(2) X, (W) + xaRA (Z)(erk (0))* R3¢,,u(2) xe, (W)

= XaRA@) (W3, (W) Rsgu(@) xe, (W) (8.10)
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for u € L, where we have used XAXészk (u) = 0 which follows from dist(A, A3, () > 0.
This yields

xaR4@)xe, @ < 1RGOV, 0)* Ragy uxe, Wl (8.11)

_ On the other hand, we can prove the bound which is given by replacing the operator
Wfl, (u) with its adjoint in the bound (F.24) in the same way as in the proof of Lemma F.3.
Therefore the argument of Lemma 6.3 yields

(W3, )" Rty uxe, )] < 77 (8.12)

with the probability larger than (1 — Ek_g). From the Wegner estimate (A.38), one has
[RAll < CWK3||g||OOEi|A| with probability larger than (1 — Z,:g). From (F.37), we have
8L < 8lpy1a < 16(2/ ’a. Immediately, (§L/16a)?? < €. Substituting these inequalities into
(8.11), we have

I xaRA(2)xe, | < Const x £; L expl— oo L] (8.13)

with probability larger than (1 — 26,(_5), where 11, is the corresponding positive constant.
The set B is covered by the sets Ay, (u). The number |Lg| is at most O(Lz/ﬂf). Let M,
denote the event that the bound (8.13) holds for all of the site u € ¢;L satisfying A, N A # .
Clearly the probability Prob(M,) that the event M, occurs, is larger than (1 — Const x
K,:ELZZ,C_Z). From these observations, one can easily show the statement of the lemma. [

Let 8§ be a small positive number, and define A% := {r € A | dist(r, dA) > §}. Then one
has A\A%? = {r e A | dist(r, dA) < §/2}. Let Xfx € C?(A) be a positive cutoff function
satisfying the following two conditions:

Xila =1 and x5]a a2 =0. (8.14)
Lemma 8.2 The Hall conductance for the bulk region is written

: e? 2mi ,
ol =17 TxePrallPra.x) [Pea yllxe + Olexpl-piLF)  @.15)
xtoy

with probability larger than (1 — Const x L™2€C+D=31/3) yohere 1! is a positive constant.

Remark Since k (§ +2) — 3 > 0 from their definitions, the Hall conductance ojcf}, for the bulk
region in the infinite volume limit is given by

2
o = < lim Z(Pp 4; 2), (8.16)
h Ltoo

xy —

with probability one if the limit in the right-hand side exists. Here we have written

2mi
I(Prp; 82) = 2l Tr xo Pr allPr A, X]), [Pra, y]lXa. (8.17)

Proof Using the contour integral representation as in (8.3), one has

1
Tr xo PraPraPya= W/dzl/dZZTrX.QRA(ZI)RA(Z2)UXRA(22)Py,AXQ~ (8.18)
Y Y
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The integrand is decomposed into two parts as

Tr xeRA(21)RA(22)vx RA(22) Py A X2
=TrxoRa(z1)RA(22) Vs XS RA(22) Py axe
+TrxeRa(z1)RA(z2)ve(1 — X3 R4(22) Py aXo- (8.19)

For the second term in the right-hand side, we have

IxeRa@DRA(Z)V (1 — X RAZD)l
<lxeRaG@DIxaRa@2)ve(1 — xS RAE)II
+ lIxeRaz) (1 — xa)IIRA(z2)v: (1 — xS RA(22)]I. (8.20)

From (5.18), (8.4), (8.7) and Lemma 8.1, this gives the small contribution. From this and the
contour integral representation, it is sufficient to consider

Tr xe Ra(21) Ra(22)vx XA Ra(22) Ra(23)vy x4 Ra(23) X2 (8.21)
Using the identity, v, x5 = (i/h)[H,, x1x’, one has

i

= Ra @)xW(DRA(22). (8.22)

i
Ry(z)vixyRa(z2) = E[RA(Z2)7XXZ] -

In the same way, the second term in the right-hand side leads to the small correction. The
statement of the lemma follows from these observations. O

We denote by Z7 the rectangular lattice {(bin1,bany) | (n1,ny) € Z?} with a pair
b = (b1, by) of lattice constants, and denote by (Z,z,)* the dual lattice, i.e., (Zi)* = ZZ —
(b1, by)/2. Let s, (u) be the by x b, rectangular box centered atu = (1, up) € Z,%, and x;(u)
the characteristic function of s,(u). When we consider the characteristic function x;(u) on
the region A, we restrict x,(u) to A.

Lemma 8.3 Let u € Z; satisfying s,(w) N A # (0. Then there exists a positive constant C
which is independent of the location u and of the size | A| such that

E[| Tr x, (W) P A[Pr 4, #1[ P, 4, 8] (@[] < C, (8.23)

where 1 is either x or y.
Proof Note that

E[| Tr x, (w) Pe A[Pr 4> X1 Pr 4, Y1 X (W]

< > E[| Tr x5 (W) P2 X5 (V[ Pe, 4> X1x6(W)[Pe.a, y1xs w1 (8.24)
v,weZi:
5p(VNAZED, 55 (W)NAAD

In order to estimate the summand in this right-hand side, we introduce the two component
function (x?, y?) of r which is defined by (x”, y*) = (u1, uy) for r € s,(u) with u € Z?.
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Using this function, one has

[Pr A, x]1=[Pra, (x — x")] 4+ [Pr 4, x"1,

, , (8.25)
[Pra, Y] =[Pra, (v — YD1+ [Pra, ¥'1
Further we note that, for any bounded operator A,
| Tr x5 (W) Pr,a xp (V) A] < /Tt x5 (W) Pr,a x5 (W) - /Tr AA* x5, (V) Pr_a x5 (V)
< AT x5 () Pr, 4 x5 (W) - /Tt x5, (V) P a x5 (V)
< Const x ||A]l, (8.26)
where we have used
1 1
T P =T — (H, Co) Pr(H Co)———
T Xe (W) Prye (1) rXs(U)H0+CO( 0+ Co) Pr(Hy + o)H0+COXs(U)
=Try.(u H,—-V,+Cy)P:(H,—V,+C < (u
X()H0+Co( 0) Pr( O)H0+COX()
2
< Const x T . 8.27
< msxrk®<%+%>xmﬂ<w (8.27)

Here we have taken a real number C, satisfying Hy + Cp > 0, and used | H, Pr| < oo.
Therefore the statement of the lemma follows from the norm bounds such as

x5 (WP, a4, X106 (W < [wi — villlx6 (V) P axs (W, (8.28)
x5 (V[ Pr, 4, (x — x") 15 (W) || < Const x || x5 (V) Pra x5 (W) (8.29)

and

E[l x5 (V) Praxo (W | x6 (W) Pe, 4 x5 (W) ][]
<{Elllx» ) Pe_a x W IPTYEL ] x5 (W) Pe_a x5 () [I1}7/?

< Const x ¢ HV-W/2p—ulw-ul/2 (8.30)

where we have used Schwarz’s inequality, || x5(V) Pr, 4 x»(W)|| < 1, and the bound (7.17) for
the Fermi sea projection. 0

In the same way, we obtain

Lemma 8.4 Letu,ve Zi satisfying sp(0) N A # @ and s,(v) N A 5~ . Then there exists a
positive constant C which is independent of the locations u, v and of the size | A| such that

E[| Tr x, (W) Pe, [ Pr, . 810 PF, 4, 81X (W) - Tt 3 (V) Pr, A [ Pr, a5 B11PF 45 BIX6 (W] < C,
(8.31)

where i is either x or y.

Using the magnetic translations and the argument in the proof of Lemma 8.2, the Hall
conductance for the boundary region is written as

out 62 2mi / / / 4 2k /3
ot — > Trxo PLallPY 40 X1 [P 40 ¥1lxar + Olexpl—pl, L7 (8.32)
Yk LiLy &
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with probability larger than (1 — Const x L~26+2=31/3) ‘where £’ is the translate of a por-
tion of the boundary region A\§2, and P, is the corresponding translate of the Fermi sea
out

projection. From this result, the Hall conductance o) for the boundary region is vanishing
in a limit L 1 oo with probability one:

Theorem 8.5 There exists a sequence {L,}, of the system sizes L = L,, such that |of)'f‘| —0
as L, — oo for almost every .

Proof Write

1

I'(L) =
L.L,

D 1 Trxer P p[TPE 4 X1 [P 40 y1xe |- (8.33)
~

By Lemma 8.3, we have E[I'(L)] — 0 as L — oco. Combining this and the inequality
E[I'(L)] = eProb(I'(L) > ¢€), we can find a sequence {L,}, of the system sizes L = L,
such that {L,}, satisfies the following two conditions:

> Prob(I'(L,) > &,) <oo and Y L AWEFTIS <o, (8.34)

n n

where {¢,}, is a sequence satisfying &, — 0 as n — oco. The application of Borel-Cantelli
theorem yields that for almost every w, there exists a number ny(w) which may depend
on w such that I'(L,) < g, for all n > ny(w) and that the finite size correction for ax";‘ is
evaluated by O(exp[—u., L%,K/ 3]) for all n > ng(w). By combining this with the expression

(8.32) of o 2™, the statement of the theorem is proved. O

X)’

9 Integrality of the Hall Conductance—Index Theoretical Approach

In this section, integrality of the Hall conductance is proved by using the index theoretical
method [10, 11, 20, 21].

When we apply the method of [10, 11] using a pair index of two projections to a concrete
example of a continuous random model such as the present system, there arises a problem
that we need a decay bound for the integral kernel of the Fermi sea projection whose Fermi
energy lies in the localization regime. But getting such a decay bound is very difficult, and
so this problem is still unsolved. Recently, Germinet, Klein and Schenker [25] proved the
constancy of the Hall conductance for a random Landau Hamiltonian which is translation
ergodic, without relying on a decay bound for the integral kernel of the Fermi sea projec-
tion. In their proof, they used a consequence of the multiscale analysis which is related to
multiplicity of the eigenvalues of the Hamiltonian, for the Hall conductance formula® which
is expressed in terms of switch functions instead of the position operator of the electron.
This Hall conductance formula was justified [7] within the linear response approximation
under the assumption on a spectral gap above the Fermi level. The integer of the quantized
value of the Hall conductance can be determined under the assumption that the disordered-
broadened Landau bands are disjoint, i.e., there exists a nonvanishing spectral gap between
two neighboring Landau bands.

8The explicit form of the Hall conductance formula using switch functions is given in Appendix I. We also
discuss the relation between this and the standard Hall conductance formula using the position operator
instead of the switch functions.
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In our approach, we assume neither the above disjoint condition for the Landau bands
nor the periodicity of the potentials Vj, and Ap which implies a translation ergodic Hamil-
tonian. But we must require the “covering condition” (2.10) which is not required in [25].
This condition is needed to estimate the number of the localized states and to obtain a decay
bound [32] for a fractional moment of the resolvent. In order to circumvent the above prob-
lem about a decay estimate for the integral kernel of the Fermi sea projection, we introduce
a partition of unity which is a collection of the characteristic functions of a small rectangular
boxes.

Let s, (u) be the ¢ x &, rectangular box centered at u € (Zg)* with the pair ¢ = (g1, &) of
the sidelengths, and y. (u) the characteristic function. We take Ny&; = a and N,&, = J3a /2
with large positive integers N;, N, and with the lattice constant a of the triangular lattice L
so that the set of all the boxes s, (u) is invariant under the lattice translations of the triangular
lattice L?. When we take the limit &, &, | 0, we keep the ratio &, /&, finite. We introduce a
unitary operator,

Ui= Y x-uexplify(w)] foraeZ?, 9.1)

ue(Z2)*

where 6,(u) is the angle of sight from a to u, i.e., arg(u — a) in the terminology of the
complex plane. Consider the operator, T := Pg — U; Pr(U;)*.

Lemma 9.1 For fixed parameters €1, &,, E[Tr|T|*] < oo.
Proof Note that

T=P—UPe(UD = Y xe(IPe — Ug Pe(US)"1x: (V)

u,ve(Z2)*

Yo =BTy ) Pexe(v), ©-2)

u,ve(Z2)*

Define t, y 1= 1 — ¢! ®=%®™ and T, | := t, v x. (W) Pgx. (v). Following the idea of [21], we
introduce T, = T, y8u—p,v. Clearly, one has ", 7" = T, and

(T(b)*T(b))u,v = Z T\:,uswfb,uTw,vawfh,v
w

= T:+h,uTu+b,u8u,v
- |tu+h,u|2X£(u)PFXs(u+b)PFXe(u)8u,v' (93)

Using these identities and Minkowski’s inequality, one obtains

ETr|TP)'? <Y E®Tr T
b

1/3
< Z{Z usb.ul"EITr | xe () Prxe (0 + b) PFxs(u)P/Z]} Y
b u
Since the inequality,

1 — ifa@—ita)| < 2lu—v|

9.5)

lu—al’
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holds as in [10, 11], one obtains

Ib|?
2 lswal’ <23 s < Const x bl 9.6)
u u

Note that

Tr | xe () Pexe (u+ b) Peye ()2
< V/Tr % (W) Prxe (u+ b) Prx. ()
X v/Tr xe (W) P e (u + b) Pexe () Pexe (u + b) Prx. (w)
< V/Tr X (W) Prxe (W) - [| Xe (W) Pr e (u + b) | y/Tr x, (w) P x. (w)
< 1 X () Prxe (w4 b) || Tr o () Py (). ©.7)

From this, the decay bound (7.17) for the Fermi sea projection and (8.27), we have
E[Tr | x. (u) Prx. (U + b) Prx. (w)|*?] < Const x eI, 9.8)
Combining this, (9.4) and (9.6) yields

(ETr|T|*)'3 < Const x Z Ible M3 < o0, 9.9
5 |

The result implies that the operator T is trace class for almost every w. Thus we can
define the relative index [10, 11],

Index(Pg, U Pe(UZ)*) := Tr(Pr — U:PF(U:)*)3, (9.10)
for the pair of the projections. This right-hand side takes an integer value as proved in
[10, I1].

Let £p be a large positive integer. Let A'* € C'(R?) be a periodic vector potential satis-
fying the periodicity,
AP (r + fpa)) = AX (r + £pay) = AP (1), 9.11)
and VOLP a periodic electrostatic potential satisfying the same periodicity,

VP (r + tpay) = Vy¥ (r + tpay) = VP (v), (9.12)

where a; are the primitive translation vectors of the triangular lattice L. In order to prove
integrality of the Hall conductance, we consider the Hamiltonian,

1
HYP = b+ e(A” + AN+ VP + V,, (9.13)

on the whole plane R?. Namely this Hamiltonian is obtained by replacing Ap, V, with
A™ VI in the Hamiltonian H,, of (2.1). We choose the integer ¢p so that the unit cell
of the large triangular lattice £pL? contains the rectangular region A% of (2.3) on which the
present finite Hall system is defined.
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We note that the magnetic translations act on the random potential V,, as the correspond-
ing translation, and that the pair index does not depend on the location a of the flux [10, 11].
Therefore the pair index for the Hamiltonian HP is an invariant function of the random-
ness under the lattice translations of the triangular lattice £ pL2. Further, since the index is
measurable [10, 11] and integrable with respect to the random variables, Birkhoff’s ergodic
theorem implies that [21] the value of the pair index does not fluctuate in the sense that it
takes an integer given by its mean for almost every random potentials. But the value of the
integer may depend on the period £p.

As in [10, 11], the relation between the pair index, Index(Pg, U Pr(UZ)*), and the Fred-
holm index, Index(PgU; Pr), of the operator PrU/ Pr in range of Pg is given by

Index(PrU; Pr) = —Index(Pg, U Pr(U)®). 9.14)
Consider another unitary operator,

U, .= = (@tia) 9.15)
|x +iy — (a1 +iad)|

Clearly, one has PrU, P = PrU; Pr + Pr(U, — UZ) Pr. Since the operator of the second
term is compact, stability theory® of the Fredholm indices implies that PrU, Pz becomes a
Fredholm operator, too, and that the index is invariant under the compact perturbation. Thus
we have

Index (PrU, Pr) = Index(PrU, Pr) = —Index(Pr, U; Pe(U;)"). 9.16)

In consequence, the pair index does not depend on the parameters €1, &;.

Following [23], we obtain the expression (9.26) below with (9.27) for the pair index. The
expression leads to the well-known Hall conductance formula [20] which is written in terms
of the position operator of the electron.

To begin with, we note that

Tr( Pz — UE Pe(Uf)*)?

= Z Tr 3o (W) (Pr — Uy Pe(U3)") xe (V) (Pr — Uy Pe(U)™) Xe (W)

u,v,w
X (Pr— Uy, Pr(Ug)") xe (w)

= Z tu,vtv.wtw.u Tr Xs(u) PFXS (V) PFXe(W) PFXS(“)' (917)
u,v,w

Since the index is independent of the location a of the flux [10, 11], one has
Index(PFUaPF)

1
= - Z Z tuvlv,wlw,u Tr Xe (u)PFXs(V)PFXs(W) PFXa (ll), (918)

VZ acAyu,v,w

where A =g1{—0,—£+1,...,8} x &{—,—0 +1,...,0} C Zf, and V, = (2¢+ 1) x
(2¢' + 1). We choose £’ so that the ratio £'/¢ is finite.

9See, for example, the book [44].
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Lemma 9.2 There exists a sequence {£,}, such that for almost every w, the index is written
. 1
Index(PeUy Pe) = — lim — > > tuyty whyuSuvowu (9.19)

Lptoo V
tn ueAZl V.W acZ2

with
Suvowou 1= Tr )xe (W) P xe (V) Pexe (W) Pe X (), (9:20)
where the lattice A} is given by
A= {—C+1/2,—0+3/2,...,£—1/2}
X &= +1/2,—'+3/2,...,0 —1/2}. 9.21)

The proof is given in Appendix G. Using Connes’ area formula [45],
2mi
D taytywlwn = — (V=) x (W —u), (9.22)
€162
acZ2
the index of (9.19) is written
Index(PpUaPp)

2mi
=— lim —
12ltc0 |£2|

D0 v —w) x (W —w) Tr xe (W) Prxe (¥) Pexe (W) Pex: (w), (9.23)

ueAy v.w
n

where £2 is the L; x L, rectangular box centered at r = 0 with the sidelengths L; = 2¢, ¢,
and L, = 2¢,e,. Note that

V- x(w—-—u)=(V-—w)x(W—u)
= (V2 — w2)(wy —uy) — (v — wi) (w2 — uz). 9.24)
Further we have
(v2 — wa) (wy — uy) Tr X, (W) P x (V) Pr xe (W) Pe . (0)
= Tr xe (@) Prx: (WIX3, Pelx: (WX, Prlxe(w), (9.25)

where the two-component function (X{, X5) of r = (x, y) is given by (X7, X3) = (u1, u»)
for r in the &; X &; rectangular box s, (u) centered at u = (u, u,). From these observations,
the index is written

Index(PrU, Pr) = lim Z°(Pg; $2,£4p) (9.26)
|$2]100

for almost every w, where we have written

£ . _ 22 & 3
I°(Pp; 2, Lp) = 2 Tr xo Pe[[ Pr, X11, [Pr, X5]1x0- (9:27)

From the proof of Lemma 9.2, we obtain

E[|Index(PrU, Pr) — I°(Pr; 2, €)1 — 0 as |£2] 4 0. (9.28)
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‘We also write

2mi
I(Pp; 2,8p):= el Tr xo Pr[[ Pr, X11, [Pr, X2]1xe, (9.29)

where (X, X;) = (x, y). This right-hand side is nothing but the well-known form of the
Hall conductance formula [20].

Lemma 9.3 The following bound is valid:

E[|Z(Pr; £2,Lp) — I°(Pr; £2,£p)|] < Const x |e], (9-30)

where |e| =,/ s% + 8%, and the positive constant in the right-hand side is independent of §2
and £p.

Proof Note that
| Tr x Pe[Pe, X11[Pr, X2lxe — Tr xo Pel Pe, X{1[Pr, X351 Xl
<|Tr xo Pel Pr, (X1 — XDI[Pr, X21x0]
+ | Tr xo Pe[ Pr, X{1[Pr, (X2 — X5)1xel, (9.31)

[P, X2l = [Pr, (y — Y"1+ [P, ¥"1,
9.32)
[Pr, X§1=[Pr, (X§ —x")]+ [Pr, x"].

Therefore we can prove the statement of the theorem in the same way as in the proof of
Lemma 8.3. O

Since we can apply Borel-Cantelli theorem as in the proof of Theorem 8.5 to this re-
sult, Lemma 9.3 yields that there exists a sequence {&, = (&1, €2.n)}» of € = &, satisfying
gjn — 0asn — oo, for j =1,2, such that

|Z(Pg; $2,£p) —I°"(Pg; 2,£p)|— 0 asn— oo (9.33)

almost surely for any fixed large £2.

Let {3,}52, be a sequence of positive numbers §, satisfying 8, — 0 as n — oo, and
let {p,}>2, be a sequence of positive numbers p, < 1 satisfying >, p, < co. Relying on
Lemma 9.3, we choose ¢ = ¢, = (¢}, €2,,) for each n so that

Prob[|Z(Pg; 22, €p) — I (Pg; 82, Lp)| > 8,/2] < pa. (9.34)
Further, for this ¢ = ¢,,, we can choose a sufficiently large §2 = £2, so that
Prob[|Index(PeU, Pr) — Z° (Pg; §2,, £p)| > 8,/2]1 < pu, (9.35)

from the proof of Lemma 9.2. The application of Borel-Cantelli theorem yields that for
almost every w, there exists a number ny(w) such that for all n > ny(w), the following two
inequalities are valid:

|Z(Pr; $2,,€p) — I (Pp; 820, £p)| < 84/2 (9-36)
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and
[Index(PrU, Pr) — I°" (Pg; $2,, £p)| < 8, /2. (9.37)

These two inequalities imply

|Index(PrU, Pr) — Z(Pr; $2,, €p)|
< |Index(PrUa Pr) — Z°" (Pg; $24, £p)| + |27 (Pr; 24, £p) — Z(Pr; 2,4, Lp)]

This result is summarized as the following index theorem:

Theorem 9.4 For a fixed period Lp and for almost every w, there exists a sequence {$2,},
of the regions 2 = £2, going to R? as n — oo such that

. 2mi
Index(PrU, Pp) = lim_ —— Tr o, Pr[[Pr, X11, [P, X2llx@,- (9.39)
2u1R2 | §2, |

For taking the infinite-volume limit A 4 R?, we want to take a sequence {A,}, of the
finite region A = A,, of the present system so that the condition (8.4) is satisfied for A =
A, D 2 = 2,. Then we must take the limit £, 1 co together with the limit £2, 1 R? so that
the unit cell of the lattice £,L? includes the region A = A, of the present system. In the
following, we consider a sequence {A,, £2,, ¢p ,}, which satisfies this requirement.

Since both of the key bounds in the proofs of Lemmas 9.2 and 9.3 do not depend on the
period £p, we can take the limit £ 1 0o together with the limit £2,, 1 R? in the above argu-
ment for Theorem 9.4 so that the above requirement is satisfied. But both of Index(PrU, Pr)
and Z(Pg; £2,,, £ p) may go to infinity as £ p 1 co. First let us prove that this case does not oc-
cur. From the argument of the proof of Lemma 8.3, one can easily show that the expectation
value E[|Z(Pg; §2,£p)|] is bounded uniformly in §2 and ¢p. Combining this with Fatou’s
lemma, we have

E[ liminf |Z(PF;SZ,EP)|]§ liminf E[|Z(Pg; 2, £p)|] < 00. (9.40)
21R2, {ptoo 21R2 (ptoo

This implies that for almost every w, there exists a sequence {£§2,(w), €p,(w)}, of the
pair {£2, ¢p} such that {£2,(w)} is a subsequence of the sequence {£2,} of Theorem 9.4,
and that lim,4o Z(Pf; £2,(w), €p ,(w)) exists. Here we should stress that the sequence
{§2,(w), €p,(w)}, may depend on the random event w. On the other hand, the inequality
(9.38) holds for a large pair {§2, €p} = {$2,(w), €p,(®)}. These observations imply that for
a fixed w, the index Index(PrU, Pr) converges to an integer as n 1 0o, too. But, since the
index does not depend on w as mentioned above, we can write {{p,}, for the sequence
{€p.,(w)}, by dropping the w dependence, and obtain the result that the following limit ex-
ists and is constant for almost every w:

Indexoo (PrU, Pr) := llil%l Index(PrU, Pr). 9.41)
P,nTOO

Newly we choose {2, £p} = {£2,, £p,} in the inequality (9.38). Then, since the index
converges to the integer as n 1 0o, we obtain
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Theorem 9.5 For almost every w, there exists a sequence {$2,,, £p ,}, of the pair {§2 = $2,,
£p = Lp ,} such that the following relation holds:

. 2mi
Index o (PrU, Pr) = lim
201R2,tp 100 |§2,]

Tr x o, Pel[ Pr, X11, [Pr, X211x0, - (9.42)

Theorem 9.6 There exists a subsequence {$2,, £p ,}, of the sequence of the preceding The-
orem 9.5 such that

. 2mi
Index o (PpU, P) = lim
2u1R2.tp 100 [§2, ]

Tr xq, Pel[Pr, X1], [Pr, X2]1xa,

. 2mi
= lim ——Tr xo, Pr a,[[Pr 4, X1, [Pr, 4, Y]lXa, (9.43)
Q”TRz |Qn|

with probability one. Here we take A = A, and €p = Up,, so that the region A = A, of the
present system satisfies the condition (8.4) for each 2 = §2,,, and the unit cell of the lattice
£p., L? includes the region A,.

Theorem 9.6 follows from the following lemma:
Lemma 9.7 Under the same assumption as in Theorem 9.6, we have
E[|Z(Pr; $24,¢p ) —Z(Pr a,; 21— 0 asn — oo. (9.44)
The proof is given in Appendix H.

Theorem 9.8 There exists a sequence {L,}, of the system sizes L = L,, such that the Hall
conductance o, in the infinite volume limit exists and is quantized to an integer as

2
Oy = %Indexoo(PpUa Pr) (9.45)

for almost every .

Proof From Theorems 9.5 and 9.6, there exists a sequence of {A,, 2, €p,}, of the triplet
{A, 2, €p} such that the following three conditions are satisfied: (i) the condition (8.4) is
satisfied for A = A, D 2 = £2,, (i) the unit cell with the period £p, includes the region
A = A, of the system with the linear size L = L), and (iii) for almost every w, the following
formula holds:

. 2mi
Index o (PpU, Pr) = VILITI?O 2.1 Tr x o, Pr a4, [[Pr A, X1, [Pra, Y]] X2, - (9.46)

Take a subsequence {L,}, of {L}, so that the sequence {L,}, of the system sizes satisfies
the two conditions of (8.34) in the proof of Lemma 8.5. Then, for almost every w, the
contribution a;’)‘,“ of the Hall conductance from the boundary region is vanishing as n 1 oo,
and the correction of the Hall conductance a;':. of (8.15) for the bulk region is also vanishing
in this limit. Combining this with (8.15) yields the desired result. |
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10 Constancy of the Hall Conductance—Homotopy Argument

In this section, we prove that the Hall conductance o, is constant as long as both the
strengths of the potentials and the Fermi energy vary in the localization regime.

10.1 Changing the Strengths of the Potentials

Consider first changing the strengths of the potentials V,*, A, V,, in the Hamiltonian HL?
of (9.13) on the whole plane R?. In order to prove constancy of the Hall conductance, we
extend the homotopy argument of [22] for lattice models to continuous models by relying
on the fractional moment bound [32] for the resolvent. As a byproduct, we prove that the
quantized value of the Hall conductance is independent of the period ¢p of the potentials
VOLP, AP See Theorem 10.1 below.

Since all the cases can be handled in the same way, we consider only the case where the
strength of the vector potential Ap varies. We denote by Pf the Fermi sea projection for the
Hamiltonian H with the vector potential A, = Ap + §Ap with a small change ||[6Ap][lc-
Since the index does not depend on w, we have

|Index(PLU, Pf) — Index(PrU, Pr)|
= E[|Index(PrU, Pf) — Index(PrU, Pr)|]
< E[|Index(PU, P) — I° (Pg; 22, £p) |1+ E[|Z°(Pg; 2, £p) — I°(Pr; 2, £p)]]
T ElT(Pr; 2, £p) — Index(PeUy Pr) |- (10.1)

From (9.28), the first and the third terms in the right-hand side become small for a large 2.
Therefore it is sufficient to show that the second term become small for a small change
[lI6Ap||lso of the vector potential.

Relying on the expression given by the right-hand side of (9.23), let us estimate the
difference,

Tr xe () Py xe (V) Ppxe (W) Pexe (@) — Tr xo (@) Pr xe (V) Pexe (W) P xe (0)
=Tr x,(WAPry, (V)PF/XS(W)PF/XS(U) +Tr Xs(u)PFXE(V)APFXS(W)PF/XS(U)
+ Tr x. (0) Prx (V) Pexe (W) A Pry.(0), (10.2)

where A Pr = P} — Pg. The first term in the right-hand side is estimated as

| Tr X (W) A Prxe (V) Prxe (W) Prxe (w)]

< T Ko (W) A Pt (V) Pt (V) A P (W) T () P (W) P (W) P (w)
< Const X | e (W) A Pexe (V)1 e (W) P xe (W] (10.3)

by using Schwarz’s inequality and the bound (8.27). Similarly, the second term is estimated
as

|TrXs (ll) PFXS(V)APFXS(W) P];Xs (ll)|

< VTrxe(w) Pry. (ll)\/ Tr xe (W) Py xe (W) A P e (V) Pr X (V) A Pr xe (W) P xe ()
< Const x || xe(w) Prxe (W) APy (V)|
< Const x || xe (W) P x: (W)l xe (W) A Prxe (W] (10.4)
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The third term can be handled in the same way as for the first term.
The contour representation of the Fermi sea projection yields

X @IPE — Pelxe W < I + 12 + 1) + 1) (10.5)
with
(1) 1 i / . .
Kh=5 f dyll x: WIR'(Eg + iy) — R(Eg +iy)1x: W, (10.6)
y—
1 Y+ , . .
Ly=5- / dyllxe IR (Eo 4 iy) — R(Eo + iy)1x: W (10.7)
y_
and
+ 1 kr
LY =5 / dE||lx:W[R'(E +iy+) — R(E +iy)1xe W, (10.8)
Eo

where R'(z) = (z — H/)~' and R(z) = (z — H,)) .
First let us estimate the last three integrals except for llﬁlv) Note that R'(z) — R(z) =
—R'(z)8H,R(z), where

e 62

[6A - (p+eA) + (p+eA) - SA]1+ —5A % (10.9)
Zme Zme

8H, =

Since all the contributions in the perturbation § H,, can be handled in the same way, we
consider only

e (W R (2)8A;(ps + eAs) R(2) X (V)
= Z Xe @R (2) 7 (W) A (py + eAg) xp (W) R(2) xe (V) (10.10)

u

as a typical one. Here { X;f (w)}, is the partition of unity which is given in the proof of
Lemma H.1 in Appendix H, and x;(u) is the characteristic function of the support of Xf (u).
The norm is estimated as

xR (2)8A, (ps + eA)RE@) x|
< 18Aslloe > e @R @7 @) [1(ps + eAy) x} @R @ x|

u

< Const x [[8A, /oo Y llxe @R’ (2) % (W) |

v

[l X @) R(2) x: (%) || + Const x || x5 () R(2) xe (W) |21, (10.11)
where we have used Lemma H.1 for getting the second inequality. Since dist(o (H,),z) > 0
in the present situation, all the norms about the resolvent R(z) decay exponentially at the

large distance. Therefore we obtain

1%y < Const x [||8Ap|[|oc exp[—4/lu — v]] (10.12)
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with a positive constant ', where #f = 2, . Consider the contribution from (10.3) because
the rest can be treated in the same way. The corresponding contribution is estimated by

18Ap[llo

2 D0 ju—viju— wle M VE[ | xo () Pl (W]

*
ueAy v.w

< Const X |||5Ap/||loo, (10.13)

where we have used the decay bound (7.17) for the Fermi sea projection.
Let s € (0, 1/3). The rest of the integrals is written

V+
I =3 / dyllx: @R (Er +iy) — R(Ep + iy)]x: (W|*°

x || xe W[R (Eg 4+ iy) — R(Eg +iy)]x. (V)13

1 Y+ . C /2
=— / dy|lxsW)[R'(Eg +iy) — R(Eg 4+ in)lx.W*31y?~",  (10.14)
y—

where we have used the inequality (Z a)* <>y . ja; for s € (0,1) and a; > 0, and the

inequality | R*(Er +iy)|| < |y|~! for Rtt R’, R. For the norm of the operator in the inte-
grand, the contribution from the term (10.10) can be estimated as

I x: W R'(Er +iy)8As(ps + eA)R(Ep + iy) x. (W) [|*°

< Const x [[8A,leo Y _{llxe @R (Eg +iy) % @) [72[| % (@) R(Eg +iy) xe (W) |7

v

+ Const X || x (W R'(Er +iy) X (@) " % W) R(Ee + iy) x: M%), (10.15)

where we have used Lemma H.1 for getting the inequality.

Consider the contribution from the first term in the summand in the right-hand side of
(10.15) because the second term can be handled in the same way. The corresponding contri-
bution from (10.3) is estimated by

15 Ap!ll o - o
|.C}2)| ZZZW—VIIU—ME/ dyly|*/3!

GA* v.w oo
* 1 xe @R (e + i) 1 @) [ | X W) R(Er + i) x: (W7
| xe (W) Pexe (W) (10.16)
Using Holder’s inequality, we have

E[ll xe @) R'(Er +iy) %o @)II**[| X6 @) R(Er + i) xe (VI | xe () Phxe (W) 1]
<{Elll x. @R (Er +iy) 7 @) "1} *{E[l| X @) R(Er + iy) x. W ']}/
x {E[ x: (@) Pix. (w1}
< Const x e Hu—w1/3 p—ulw'=vI/3 p—plu=wl/3 (10.17)
where we have used the decay bounds (7.1), (7.17) and || x.(u) P{x.(W)|| < 1. Relying on

Fatou’s lemma and Fubini-Tonelli theorem, and substituting the bound (10.17) into (10.16),
we can obtain the desired result.
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Thus the index is constant as long as the strengths of the potentials vary in the localization
regime. In order to describe our statement more precisely, we recall the definitions of the
lower and upper localization regimes which are given by the intervals (5.36) and (5.37),
respectively, in the case of Ap = 0. In the case of Ap # 0, the corresponding condition is
given by (5.47). See also Sect. 11. We continuously change the strength of all the potentials,
Vo, V,, and Ap, starting from the special point, ||Volleo = | Vwlloo = 0 and [||Ap||lec = O,
for a fixed Fermi energy Er. Then, if the Fermi energy Ef is staying the lower or upper
localization regime, the index is equal to the special case that all the potentials are vanishing.
This result also implies that the index does not depend on the period ¢ of the potentials. In
consequence, Theorem 9.8 is refined as

Theorem 10.1 Suppose that the Fermi energy Eg lies in the localization regime around
the n-th Landau energy &,_y = (n — 1/2)hw.. There exists a sequence {Ly ,, Ly ,}, of the
system sizes such that the Hall conductance o, in the infinite volume limit exists and is
quantized to an integer as

e? n for the upper localization regime,
Oy = —— X (10.18)
: h n —1 forthe lower localization regime

with probability one.

Remark

1. When the strength of one of the potentials becomes sufficiently large for a fixed strength
of the magnetic field, the localization regimes become empty in our definition. Thus we
need the condition that the strengths of the potentials are weak, compared to the strength
of the magnetic field.

2. The number of the states in a localization regime will be proved to be of bulk order for
the weak potentials, compared to the strength of the magnetic field in Sect. 11.

3. We do not require any assumption on the tails A € [Apin, —A_] U [A4, Anax] of the cou-
pling constant of the random potential V,,. Therefore we allow the possibility that the
spectral gap between two neighboring disordered-broadened Landau bands vanishes ow-
ing to the tails of the random potential.

10.2 Changing the Fermi Level

Next let us prove the constancy of the Hall conductance for changing the Fermi level Eg.
The Hall conductance o, of (8.2) is written

Oyy = —

ih62 Z (¢m7 vx‘ﬂn)(@na Uy(/)m)
L.L, (En — Ep)?

Y mnEy<Ep<Ep

—(x < y):| (10.19)

in terms of the eigenvector ¢, of the single electron Hamiltonian H,, with the eigenvalue
E,,n=1,2,..., on the box A®. We take the energy eigenvalues E, in increasing order,
repeated according to multiplicity.

Consider changing the number of the electrons below the Fermi level from N to N’ in
the localization regime. Without loss of generality, we can assume N’ > N. We denote by
Er and Ef. the corresponding two Fermi energies for N and N’ electrons, respectively. The
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sum in the right-hand side of (10.19) for N’ electrons is written as

Z |:(‘pms Ux(pn)((pnv Uygom)

(E, — E,) —(x<—>y)]

m,n:E,,,<E’F<E,l

Z i |:(<.0m, nggn)(q)n’ qu)m) _ ()C < )]
(Em - En)2 Y

m=<N n=N'+1

& [ @ 120 @ VyP)
+ > > —(x <)

_ 2
m=N+1n=N'+1 (Em — En)

) i P V) P Oy ) _
(Ew — E,)? Y

m<N n=N+1
ul (Qﬂm, Ux(pn)((/)m v_\r(/)m)
_Z Z (E,, — E,)? —(x<y)
m<N n=N+1
Y S [ @ v (@, Vy @)
+ Z Z (E, — E,)° —(x<ey) | (10.20)

m=N+1n=N'+1

The first double sum in the right-hand side of the second equality leads the Hall conductance
oxy for N electrons. Therefore it is sufficient to estimate the other two double sums. These
two sums are compactly written as

Nf
Z Z |:(§0m7 Ux(pn)((pn? U_y(ﬂm) _ (x PaN y):| (1021)

E, — E,)?
m=N+1n<Nandn>N' ( m n)

In consequence, the difference between the two Hall conductances for N and N’ electrons
is written
2

Aol — i Tr APY[P P, s]JA P (10.22)
Xy = A x, A Ly A A :

xbay

where A P is the spectral projection onto the localization regime, and
1
Psa=5— | dzRa(2)vsRA(2), (10.23)
2ri J,

with the resolvent R4(z) = (z — H, 4)~! for the present Hamiltonian H, 4 on the box
A = A% Here the closed path y encircles the energy eigenvalues of the “localized” states.
In the same way as in Lemma 8.2 and (8.32), we have

2
Aol = %I’OC(A PY%) + 8(L) + O(exp[—u'L*/3]) (10.24)

with probability larger than (1 — Const x L~2«¢+2=31/3) ‘where

-
T (APYS) = I?ml Tr xo APX[[APYS, x], [APY, y]1xe, (10.25)
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and §(L) is the correction which comes from the boundary region A\£2. In the same way
as in the proof of Lemma 8.5, we can show that E[§(L)] — 0 as L — oo.

Lemma 10.2 The following bound is valid:
E|Z"(APY%)| < Const x AE'/?, (10.26)
where AE = E}, — Ef.

Proof Using Schwarz’s inequality, one has

2
E|Z°°(APY9)| < I%I E[Tr xo AP xo]-E[Tr xo A*AP Axo], (10.27)

where we have written A = [[APY°, x], [A P/'{’C, v]]. From the Wegner estimate (A.38), one
has

1 i 1
ﬁE[Tr Xe AP xel < @E[Tr XAAPYx 4] < Const x AE. (10.28)

Therefore it is sufficient to show that the quantity |2|~'E[Tr xg A*AP}{’CA X ] is bounded.
Schwarz’s inequality yields

Tr x, (W) A* AP Ay, (w)

=) T (WA X, (VAP x, (W) Axy ()

(A

<3 VT @) A X (V) AP (%) Ay () ¢y Tr (W) A" x5 (W) A P (W) A s (W)

v, W

< Const x Y 1M Axs @] - l1x(W) A x (W], (10.29)

A

where we have used the bound (8.27) for getting the second inequality. One can show that
the expectation value of the right-hand side is finite in the same way as in the proof of
Lemma 8.3. 0

We denote by M, the event M, for the Fermi energy Ep in the proof of Lemma 8.1.
Note that
E[|Index(PeU, Pr) — (h/e*)o s [I(M 4 N M),)]
< E[|Index(PrUa Pr) — Z° (Pr; 2, Lp)]]
+E[|Z°(P; 2, €p) — Z(Pr; 82, Lp)|1 + E[|Z(Pr; $2,£p) — T(Pr a5 £2)]]
+ E[|Z(Pr.4: 2) — (h/e*)o 5 [L(M N M)))]. (10.30)
From (8.15), (9.28) and Lemmas 9.3 and 9.7, all the terms in the right-hand side become

small for large |£2|, L and for a small ¢. Further, from (8.32), the proof of Lemma 8.5
and (10.24), we have
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Widths of the Hall Conductance Plateaus 885

E[lof — o [I(M4 N M))]

<E[J A0/ [I(M 4 N M)] +E[o % [I(Ma 1 M)] + E[o [1(M 4 N M))]

xy y
&2
< EE|IIOC(A P%)| + (small correction). (10.31)

From these observations and the fact that the indices are constant for almost every w, we
obtain

[Index(PLU, Pg) — Index(PrU, Pr) |E[I(M 4 N M'))]
< E[|Index(PrU, Pf) — Index(PeU, Pr) [I(M 4 N M))]
<E|Z7"(A P/I\"C)I + (small correction)
< Const x AE'? + (small correction), (10.32)
where we have used Lemma 10.2 for getting the last inequality. This implies that the index

must be constant for a small change AE of the Fermi energy in the localization regime
because the index is equal to an integer for almost every w.

11 Widths of the Hall Conductance Plateaus

In this section, we prove that the widths of the Hall conductance plateaus are of the bulk
order under certain conditions for the potentials, by estimating the number of the localized
states. The conditions are realized for weak potentials as we will see in this section.

Consider first the case with Ap = 0. To begin with, we note that, when the strength of the
random potential V,, continuously increases from A =0to A € [—A_, A ] C [Amins Amaxl, the
energies E of the n 4 1-th Landau band are broadened into the interval,

Vo lloo = Aty < E — & < Vg oo + At (11.1)

Let § be a small positive parameter. For the lower region of the band, we choose
Ay = )»'jr’“’ < Amax> A~ = A" and _ = § in the condition (5.36) so that the pair (A, A_) =
(Alow, Alov) satisfies the condition (2.7) with a small A_ = 2. Then the condition (5.36)
for the energy E leading to a localized state becomes

Enct + Vi lloo + M2ty +8h0re < E < &, — Vg lloo — 2Vuy — AE. (11.2)

We call this interval the lower localization regime. For the upper region of the band, we
choose A, = )Luf, Ao =A" > —Anin and S+ = 8/2 in the condition (5.37) so that the pair
(A, Ao) = (AP, 1) satisfies the condition (2.7) with a small A, = A%". The condition
(5.37) for localization is

En H IV Il +2Pu; + AE<E <&t — 1V lloo — 2Puy — Sha,. (11.3)

A

We call this interval the upper localization regime. We require that the positive constants, &,
Aljr’w and AP, satisfy

Vo lloo + Vg lloo + U1 +A%)uy + 28hew, < T, (11.4)
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so that the lower and upper localization regimes overlap with each other. This condition is
satisfied for a large strength B of the magnetic field for fixed strengths of the potentials. We
stress that we allow the possibility that the spectral gap between two neighboring disordered-
broadened Landau bands vanishes owing to the tails A € [Apin, 21U [)Lljr’w, Amax] Of the
coupling constants. In this situation, all the states in the n + 1-th broadened Landau band
are localized except for the energies E satisfying —6E_ < E — &, <§E,, where 6E_ =
Vo lloo + A%uy + AE and SE 4 = ||V, oo + A u1 + AE. In other words, the number of
the extended states can be bounded by the number of the energy eigenvalues E satisfying
—8E_<E—-¢&,<8E,.

In order to obtain the upper bound for the number of the extended states, consider first
the special case with Vy = 0 in the Hamiltonian H, of (2.2). Namely, the Hamiltonian H is
equal to the simplest Landau Hamiltonian Hy of (3.1), combining with the present assump-
tion Ap = 0. In this case, the number of the extended states can be estimated with probability
nearly equal to one for the sufficiently large volume'® by using the Wegner estimate (A.38).
When Vj # 0, the deviation of the energy eigenvalues is bounded from above by || VO+ lloo
and from below by — ||V ||oo. From these observations and the min-max principle, we can
estimate the number N, of the extended states which appear only near the center of the
band as

Next < CW K18l BE4 4+ 8E— + Vg lloo + 1V lloo) 1Al (11.5)

in the case with V, # 0, where C‘(,S) and K;O) are the positive constants for the case of
Vo = 0. Since the total number of the states in the n + 1-th Landau band is given by M =
|AleB/(2m h), the number Ny, of the localized states in the band is evaluated as

e 0)

Nioe = M — Ney > B|A| ——C(O)&||g|| SE (11.6)
loc ext — 'mh W B [e9) .

with 8E = 2(|| Vg oo + 1Vg lleo) + A + 2P)u; 4+ 2AE. We note that K\ /B ~ Const
for a large B from the remark below Theorem A.2. Thus, if the strength of the potential
Vo is sufficiently weak, we can choose the parameters Aow )\ljrp, A€ so that the right-hand
side (11.6) is strictly positive for any large magnetic field. This implies that the number N
is of order of the bulk. In order to discuss the case for a strong random potential which
behaves like ||u||o ~ B for a strong magnetic field, we recall u; = 2||u|| .. We also have
K ;0) = O(1) which was already obtained at the end of Sect. 5. From these and the same
argument, we can also get the lower bound for the number of the localized states, i.e., the
width of the Hall conductance.

Let us see that the above estimate for the widths of the plateaus gives the optimal value
in the limit B 1 oo for V;; = 0. From the above bounds, we have

& low up
i < Const x [(AZ" + A Duy +2A&]. (11.7)

From the argument about the initial decay estimate for the resolvent in Sect. 5, we can take
the three parameters, Alow )»ip, A&, so as to go to zero in the strong magnetic field limit
B 1 o0o. Thus the density of the extended states in the Landau level is vanishing in the limit.

Next consider the case with Ap # 0. The method to show the existence of the Hall con-
ductance plateau with the width of bulk order is basically the same as in the above case with

10See, for example, Chap. VI of the book [31].
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Ap =0, except for considering strong potentials. We assume that the bump u of the random
potential V,, is written u = hw.i with a fixed, dimensionless function #, and that the vec-
tor potential Ap satisfies |||Ap||loc < oB'/? with a small, positive constant a. Instead of
the condition (11.4), we require that the corresponding positive constants, S R )Llfw and A",
satisfy

Vo oo + 1Vy lloo + A1 4+ 2%)ut) + 8heo,
V2e o2

+ MIIIAPIIIm(v En+ V1) + . IApIII2, < fe.. (11.8)
Similarly, for the lower localization regime, we choose A, = )Lljr’w < Amaxs A— =AY and

8, =38_ =4/2 in the condition (5.47) so that the pair (A1, A_) = (A%, A1°%) satisfies the
condition (2.7) with a small A_ = A%, Then all the states in the n + 1-th broadened Landau
band with the energies E < &, — § E_ are localized, where

_ W N V2e
SE_=Vy lloo +2Y u1+§8hwc+\/_m—e”|AP|”OO\/57n~ (11.9)

For the upper localization regime, we choose A = Aip, A= A" > —Anin and 3+ =5 =
8 /2 in the same condition (5.47) so that the pair (A, A_) = (Aip, A"P) satisfies the condition
(2.7) with a small A, = A%". Then all the states in the n + 1-th broadened Landau band with
the energies E > &, + § E, are localized, where

14 \/Ee e?
SE, =V leo + AP —§h Ap|lloov/En Apl|%.. 11.10
+=1Vy lleo + +u1+2 wc+ﬂlll plll +2me||| plll% ( )

The corresponding S E in (11.6) is given by

SE =21V lloo + V5 lloo) + W + Ay + 8heo,

4\/§e e?
A VE, + —lIAp|||%. 11.11
+ mlll pllloo +me||| plll% ( )

Consequently there appears the Hall conductance plateau with the width of the bulk order
for a fixed potential Vj, for a strong magnetic field, and for small parameters, A7, A%, 8, ap.

12 Corrections to the Linear Response Formula

The aim of this section is to prove that both of the acceleration coefficients y,,, u = x, y,
in the linear response formula (8.1) are vanishing in the infinite volume limit, and that the
corrections 80,,(t), u = x, y, due to the initial adiabatic process in (8.1) satisfy the bound
(2.27).

We recall the expression of the acceleration coefficients [8],

62

L.L,

N
[ Bu,y +Trvu(Py,APF,A+PF,APy,A)] foru:x,y. (121)

nme

Yuy =
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Using the partition of unity, {x;(u)},, which was introduced in Sect. 8, we have

Trv,(Py. 4 Pe.a+ Pe.aPya) = Y [Trv Py axs (@) Pea + Trv, P axy@ Py al. (12.2)

u

First let us consider the first term Trv, Py 4 x, (W) Pg 4 in the summand in the right-hand
side. Since we can shift the location of the box s, (u) by using the magnetic translations, we
can assume dist(u, 0A) = O(L). Write R,(z) = (z — Hw,A)*'. Note that

1
Trv, Py axp(@) Pra = %/dZTrvuRA(Z)vyRA(Z)Xb(u)PF,A
Y
1 8
=0 dzTrv, Ry (2)vy x4 Ra(2) xp (@) Pr 4
Tl y

1
-‘rz—m/dZTrUuRA(Z)vy(l_Xi)RA(Z)Xb(u)PF,Av (12.3)
Y

where x is the C?, positive cutoff function which was also introduced in Sect. 8. By the
same argument as in the proof of Lemma 8.2, the absolute value of the second term in the
right-hand side has a stretched exponentially decaying bound as in Lemma 8.1. Since the
number of u for the summation in the right-hand side of (12.2) is of order of the volume
L,L, = O(L?), the corresponding contribution is vanishing in the infinite volume limit
L 1 oo. Using the identity, vyxfl =(@i/M)]y,z— H, alx’, one has

1
- / dZRA()vy 1 R A ) xp (W)
Tl y

j 1
= %[PF.A, Y X xp(w) — 2 ], dzRA)YW (x3) R4 (2) x5 (w) (12.4)

for the first term in the right-hand side of (12.3). This second term in the right-hand side also
gives a small correction. In consequence, only the first term in the right-hand side of (12.4)
may lead to a nonvanishing contribution in the infinite-volume limit.

Since the second term in the summand in the right-hand side of (12.2) can handled in the
same way, we get

Trlv, Py o xp (@) Pe 4 + vy Pr g xp (@) Py 4]

i .

= 5 Trl{vul Pe.a, Y X316 (W) Pr, 4 + vy Pr,a Xp (W[ P, 4, yx 41} + corrections
i .

=% Tr{—v,y X’ P4 xp(W) P_a + v, Pe_a X (W) Pr oy X} + corrections

1
= ——3,,y Tr Pr 4 x»(0) Pg,_4 + corrections, (12.5)
m

e

where we have used v,y = —(ih/m.)d,,, + yv, for getting the last equality. Substituting
this and (12.2) into the expression (12.1) of y,,, we obtain

lim y,, =0 foru = x,y with probability one. (12.6)
ASySTRZ -
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Next consider the corrections oy, (t) due to the initial adiabatic process in (8.1). We
begin with recalling the expression [8],

80y (1) = <¢>3NA>, v 11— PIVIMES) — BNV og) + e (12.7)
x y
with
iT h . h h )
M, (E) = _ efr]TeIET/h == elf[/h’ 12.8
(&) ”5+ihn (S—i—ihn)z] £ (E+ihn)? (128)
where <D(N) is the N electron ground state vector with the energy eigenvalue E(()AQ v™ the

N electron velocity operator, and Pé A) the projection onto the N electron ground state.
Since all the contributions can be handled in the same way, we consider

1 N
Ny (t) 1= —— L (@), v Py

x [(E§Y) — HD ™2 — (BN — H) +iln)~ ]e’“vwhp(m) (12.9)

with § = (Ep 4 V) H;{Vj)z /h as an example. Here we have written Py = 1 — Po(,}jx) for short.

In order to ehmlnate the factor eié, we use Schwarz’s inequality. As a result, we obtain

Ny (D> < No ()N, (1) with

Nu(®) = 7 . (@44, v Pex
X [ESY) — HS 7+ ESY — B + it oM egh))  (12.10)
and
Y Lo
Ny (1) = <(p0,A’Uy P

L.L,
x [[Eg — HOO1 = [ES) — H + it PoM gy (12.11)
Further the application of the inequality ~/ab < (a + b)/2 for a, b > 0 yields

Wiy (O] < 1N (0) + 07 * Ny (1)1/2 - for s € 0,1/3). (12.12)

Since the present system has no electron-electron interaction, N, y(t) is written as

N, (@) L omep /d 1 1 !
) = T — Vy —
y LL, "2 ) = Hya 2= Hos z— Hos+ily

1 1 1
— dz' - ; Uy
2711 7' —Hy Z/—Hw’A—lﬁT] 7' —Hy

1 1
‘- H, 4 [Z_Hw,A _Z_Hw,A+ihn]

1 1 1 !
R _ , .23
X Xb(a)Q,]Ti /y < |:Z/ —H, 2 — Hyp— ihﬂ]v) 7/ —Hy, 2 ( )
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Here we have introduced the partition of unity {x,(a)}. In the same way as the above, the
summand can be further written as

1 U
TrPra— | dzly, (2 — Hp 4) '] —————
Tira 2mi /y 2y, @ ) ]Z —H, s +ihn

1
x Xh(a)T/dz/+[(z/—Hw’A)_l,y]—}-correction. (12.14)
wiJ, 7z —Hya—iln

Here the correction vanishes almost surely in the infinite volume limit by taking a suitable
sequence {L,, Ly} of the system sizes as in the proof of Theorem 8.5. If z of the resolvent
R4(z) =(z— H,, )~ ! is not near to the spectrum o (H,, ), then the resolvent is bounded
and decays exponentially at large distance. Therefore we consider only the contributions
from the paths near the Fermi energy Er in the first term in the right-hand side of (12.14).
As a typical example of the corresponding contributions, let us consider

L= f di / dt' T x5 (w) Pr, o xp (VL. Ra(Er + 1015 (W)

wv,w,z"

X NRA(Ep +i(t + hn) xp(@)nRA(Ep + i (¢ — hn))
X xp(@)[RA(ER+it'), ylxp(u). (12.15)

Note that

| Tt x5 (W) P4 xp (V) A| < /Tt x5 (@) Pr_a xp(W)/Tr A* x5 (V) Pra x5 (V) A
< Const x ||A| (12.16)

for any bounded operator A, where we have used the bound (8.27), and that

X6 (LY, Ra(2)1x (W)l < (Const + vy — w2 )| 6 (V) RA(2) X6 (Wl (12.17)

where we have used the decomposition y = y — y” 4 y” in the proof of Lemma 8.3. From
these observations, we have

|I,| < Const x Z (Const + |va — wa|) (Const + |22 — us))

wv,w,z

I+
X / dtl| xe(VYRACEF +it) xo (W) - nll xo (W) RA(Eg + (2 + hin)) xp(a) ||

I+
X/ de'nllxp(@RA(Ep +i(t' — hp))
—

x X @ xp @) Ra(Er +it") xp (W] (12.18)

The first integral is decomposed into two parts as

1y —hn/2 1y
/ dt~--:/ dt---+/ dt---. (12.19)
1— [ —hn/2
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The second part of the integral is estimated as

/h 2dlllxb(V)RA(EFJrz't)xb(W)Il “Nlxs(WYRA(Ep +i(t + ) xp(@)]|
—hn/

s
< Const x n”“/ dt )| xp (V)R A (Eg + it) x, (W) [[*/4[*/47!
—hn/2

|| (W) Ra(Ep + i (t + hn) xs (@) ]*/*, (12.20)
where we have used the inequality | x,(W)RA(Er + i(t + hn))xp(@)|| < 2/(hn) for
t > —hn/2. For the first part of the integral, we can obtain a similar bound by using
Ixs(VRA(EE + it) xp(W)|| < 2/(hn) for t < —hn/2. Clearly the second integral about ¢’
in the right-hand side of (12.18) can be treated in the same way. Combining these observa-
tions with Holder inequality,

Elllxo (MR AEr + i) xo (W[l xo (W) R A (Er + i (t + hn)) x» (@) [|*/*
x [ xp@RA(Ep + it — h) xo @17 X6 (@) R4 (Er + it') i (W) /4]
< Elllxo (W) Ra(Er +it) xo (W) )1 Elll xo (W) R4 (Er + i (¢ + h)) x @) ']/
x E[llxs@ R4 (Er +i(t' — hm)) xp @) |I°1"/*
x E[|l x5 (@) Ra(Er + it') x, (W)I*1"%, (12.21)
we obtain
E|l,] < Const x ns/z Z (Const + |v, — wa|)(Const + |zo — us|)
u,v,w,z

o~ HIV=WI/4 y=uIw=al/4 ,—ula—2/4 ,—plz—ul 4
< Const x ns/z, (12.22)

where we have used Fatou’s lemma, Fubini-Tonelli theorem and the fractional moment
bound (7.1) as in the proof of Lemma 7.1. Combining this bound, (12.13), (12.14) and
(12.15), the expectation of A/; () of (12.12) is bounded by Const x 7°/2.

Since the bound,

€7+ €+~ <4E77, (12.23)

holds for £ € R, the expectation of N, () of (12.12) can be proved to be bounded in a easier
way. As aresult, we obtain that there exists a sequence {L, ,, Ly ,}, of the system sizes such
that the bound,
lim A, (#) < Const x n°/*, (12.24)
Ly,Ly—>o00

holds almost surely, where the positive constant may depend on w.

Since the rest of the contributions for oy, (¢) can be handled in the same way, we obtain
the desired result that the bound,

180, ()] < [C1 (@) + Ca(@)TTe™" + C3 (), (12.25)

holds almost surely for s € (0,1/3) and for u = x,y. Here the positive constants,
Ci(w) < o0, j =1,2,3, may depend on w. Choosing s = 4/13 < 1/3, we get the
bound (2.27).
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Appendix A: Wegner Estimate

In this appendix, we study the Wegner estimate [39] for the density of states for a single-
electron Hamiltonian in a general setting. For this purpose, we follow the argument by Bar-
baroux, Combes and Hislop [18]. However, the following argument is slightly simplified
compared to their original one because we are interested in two dimensions only.

Consider a single spinless electron system with a disorder potential V,, in d dimensions.
The Hamiltonian is given by H, = Hy + V,, on L?(R?) with the unperturbed Hamiltonian,

1
2m,

Hy= (p+eA)? + V. (A.1)
We assume A € C'(R?,R?) and V, € L*(RY), and assume that the Hamiltonian H, is
essentially self-adjoint with a boundary condition. As a disorder potential V,,, we consider
an Anderson type potential of impurities,

Vo) =) ha(@)u(r - a), (A2)
acLd
for r = (x1,x2,...,x45) € R?. The constants {A,(w)|a € LY} form a family of indepen-

dent, identically distributed random variables on a d-dimensional periodic lattice L¢ C R?.
The common distribution has a density g > 0 which has compact support and satisfies
g € L*(R) N C(R). We assume that the single-site potential # is non-negative and has
compact support. We write the sum of the single-site potentials u as

Ur) = Z u(r—a) forreR% (A.3)

acLd

We assume ||| < +00. Clearly this implies [|u| o < +00. From these assumptions, we
have ||V, || < vr < 400 with some positive constant vg which is independent of the ran-
dom variables.

For a bounded region A C R¢, we denote by H, 1 = Ho.ao + V., 4 the Hamiltonian H,
restricted to A with a boundary condition. Here V,, 4 = V,,| A, i.e., V,, 4 is the restriction of
V, to A. We assume

Uy :u|A ZuminXAs (A4)

where Uy, is a positive constant which is independent of the bounded region A, and x4 is
the characteristic function for A. Namely there is no flat potential region satisfying u = 0.
Further we assume that

Tr(Ho,z + Emin) X2 < Kol$2]" (A.5)

for a finite region £2 C A, with a positive constant Enin > ||V |leo, Where Tr stands for
the trace on L?(A); K, and ng are the positive constants which are independent of the
volumes |A|, |§2] of the finite regions A, £2. If the vector potential A satisfies the additional
assumption A € C>(R, R?), then the inequality (A.5) is valid in the dimensions d < 3. See
Ref. [18] for details and also for the treatment in the case of higher dimensions d > 4 in
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which they require a stronger assumption than the above assumption (A.5). Consider the
present system with the unperturbed Hamiltonian (2.2). From the inequality (3.9) for the
lower edge of the Landau band, we have

Tr(Ho, s + Emin) > X < Const x |b|/B (A.6)

for strong magnetic field strengths B. Here we have assumed that the region 2 is contained
in a rectangular box b such that the volume |b| of the box satisfies the flux quantization
condition |b|/(2n£%) € N. Namely

ng=1 and Ky~ Constx B~! fora large B. (A7)

Let O, 4(A) denote the spectral projection for H, 4 with an energy interval A C R.
Let ¢ be an eigenvector of the Hamiltonian H,, 4, i.e., H, sV = EVyg with an energy
eigenvalue E € R. The Schrodinger equation is written as

(HO,A + gmin)wE = (_ Vw,A + E + gmin)'//E- (AS)
Since Hy s + Emin > 0 from the assumption Epin > || V;y [loo, One has

1
- HO,A + Smin
_ 1
HO,A + Smin

WE (_ Vw,A + E + gmin)WE

(=Vo.a+ Ho a4 Emin) VE- (A.9)

Using this identity, one obtains

Tr Q.. 4(A)
=Tr(Hoa + Emin) >(=Vipa + Ho p + Enin) Qo A (A) (= Vi 4 + Hoy g + Emin)
=Tr(Ho s + Emin) >V, 4 Qo a(A)V, 4
— Tr(Ho.4 + Emin) "> Vo4 (Ho. 4 + Emin) Qw4 (A)
— Tr(Ho.4 + Emin) "> (Ho, 4 + Emin) Qw4 (A) Vi, 4
+ Tr(Ho 4 + Emin) > (Ho,a + Emin)> Qu.a (D). (A.10)

Let us evaluate the first term in the last line of the right-hand side. Substituting the ex-
pression (A.2) of V,, into the term, one has

Tr(Ho, 4 + Emin) > Vi, 4 Q. a(A) Vi 4

= hak Tr(Ho,a + Emin) tta.4 Q4 (At 4
a,b

=" hahy Truy 3 (Ho s + Emin) 1 31,3 Q0 a (M), (A1)
a,b

where we have written u,(r) = u(r — a) and u, 4 = u,|A. Since the operator
1 12 2 1/2
1\ =y (Ho a + Emin) 2y (A.12)

@ Springer



894 T. Koma

00
n=1>

is compact, there exist a pair of orthonormal bases, {¢{"}>° | and {y,{"}°,, and nonnegative

numbers {¢"}2 such that'!
o0
o= uPew, ). (A.13)
n=1

The numbers ,ufl” are the eigenvalues of |Tb(’la) |. Using this representation (A.13), one has
1 172 1/2
I T uy 2 O a (D)uy

o0
1/2 1/2
< 1@ 1) 3 Qo a (D) S0l

n=1

l (o]
<3 2wl 13 Q0 a (M 5 nD) + @ w3 00 a5 (A14)
n=1

Therefore the expectation value of the left-hand side of the first inequality can be bounded
from above as

EAlT 1 uy2 00 a(D)uy/311

1 o0
<3 (Z uf})) supEAL(Y " 1,5 0w a (D), 30 ")
n=1 n

+ @, 1y Qv s (Auy % 01, (A.15)

where E4[- - -] stands for the expectation with respect to the random variables on a region
A C RY. The right-hand side can be evaluated by using the following Lemma A.1 which

is essentially due to Kotani and Simon [47]. In order to make this paper self-contained, we
give the proof of Lemma A.1 in Appendix B, following from Ref. [41].

Lemma A.1 Let v be a nonnegative function satisfying v < u, 5. Then

= llgllslAl- (A.16)

”/ drag(ha)v'? 0y a(A)'?
R

From the bound (A.16) and the inequality (A.15), one has
EAll Tr Y3513 00 a (W) 311 < liglool AN (A.17)
where || ---||; :=Tr|---|. Moreover, combining this bound with (A.11), one gets

EA[Tr(Ho 4 + Emin) "> Vio, 4 Qo 4 (A) Vi 4]

= D Ealhadn T30 00 a (M)
a,b

Hgee, for example, Chapter VI of the book by Reed and Simon [46].
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<MY TEANTE G )3 Qo a (M) 1]
a,b

< Mligllacl ALY I 2 1 (A.18)

a,b

where M 1= sup; cqupp e 121

Next consider the second term in the right-hand side of the second equality in (A.10).
From the assumption (A.4), one can easily find a set of nonnegative functions {ii, 4}, satis-
fying the following two conditions:

lian <ua, forany lattice site a, (A.19)
and
Z g A =UninXA- (A.20)
a
Using the identity (A.20), one has
Tr(Ho.a + Enin) > Vio.a(Ho 4 + Enin) Qw,a(A)

= Z Aa Tr(HO,A + 5min)_2ua,A (Ha),A + gmin) Qa),A (A)XA

Z)‘ Tr(HO At amn) Ug, A(H i\ + gmln)Qw A(A)ub A

umln ab
1 ~
= D M Te i, 3 (Ho s + Emin) Qo a (D)l 5. (A21)
min a,b
where
1,2 = iy’ (Ho.p + Emin) 2l (A22)

In the same way,

| Te Y% uy 3 (o 4+ Emin) Qur,a (At 5

< Z w12 w3 (Hop + Enin) Qw4 (A)ity 30|

gmax A
_42( )Z DL 3 3 Qo a (M) )
n=1
P Qo (D)0, (A.23)

where {¢?}°° | and {y,(?}°°, are orthonormal bases such that
17,2 Z 2@, .. (A24)

with the eigenvalues ;1> of |T(2a) [, and

Emax(A) = sup |E + Eninl- (A.25)
EeA
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Combining (A.21), (A.23) and Lemma A.1 with the condition (A.19), one has

E Al Tr(Ho 4 + Emin) "> Vi, a(Ho, 4 + Emin) Qw4 (A)]]

Emax (A)
=T lglleol ALY I (A.26)

mi
a,b

=M

In the same way,

E Al Tr(Ho, 4 + Emin) "> (Ho, 4 + Emin) Qoo 4 (D) Vo 4]

Emax(A)
= M= llgllel AL I (A27)
min ab
and
EAl| Tr(Ho,a + Emin) > (Ho, 4 + Enin)” Qw4 (A)]]
Emax (D))’
5( o ) lgllocl ALY Il (A.28)
min ab
where

1) =y (Ho,a + Emin) ity 5,
(A.29)

4 ~1/2 —2~1/2
1\ =ity (Hooa + Emin) ity 5.

Next let us estimate Za bl Tb(.ia)\ I, i =1, 2,3, 4. For simplicity, we consider only the case
with i = 1 because all the other cases can be estimated in the same way. We decompose the

sum into two parts as

(1) 1) 1
Y Iali= > IMyalhi+ > sl (A.30)
a,b a,b ab
overlap non-overlap

where the first sum is over the lattice sites a, b such that the corresponding two potentials
Ua, A, Up, 4 Overlap with each other, and the second sum is over those for the non-overlapping

potentials. Note that
IO < I, (A31)

where we have used the inequality ||AB]|; < ||All2||B]» for bounded operators A, B. Here
the norm || - - - || is defined as ||A||, := +/Tr A* A for a bounded operator A if the right-hand
side exists. Using the inequality (A.31) and the assumption (A.5), one has

D Iyl < Const x Kollulloo| suppu|™| A, (A32)
a,b

overlap

where the positive constant depends only on the lattice L¢ and on the support of the poten-
tial u, and so the constant is finite from the assumptions on the lattice and the potential.
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Using Proposition C.1 in Appendix C, the second sum in the right-hand side of (A.30)
can be evaluated as

Const X ||u]lso ) _
1Tyl < ——— Ko suppu|™/ re e
Z P T (1= 1) Emin = 1V llo) Z

non-overlap non-overlap

- Const X ||u]l
T (= kD) (Emin = 1V lloo)

KoK (@)|suppu|"/?| A], (A.33)

where « is given by (C.2), r = dist(supp u,, supp up), and the positive constant K, (o) satis-
fies the bound:

K>(a) < Const x Z Fle " (A.34)
b

with the positive constant and with a fixed lattice site a. Combining this result with the
bound (A.32), one has

D Iyl < Const x KoK [lulloo| suppu|™/?| Al (A35)
a,b

with the positive constant

K> (@)
(] - Kz)(gmin - ” V()_”oo)

Ky = | suppu|™/? + (A.36)

Clearly this constant K; is independent of the strength B of the magnetic field and of the
random potential V,,. From the condition (A.19) for i, 4, the following bounds also hold:

D Myl < Const x KoK [|ulloo| suppu|™| Al (A37)
ab

foralli =1, 2, 3,4. Combining this, (A.10), (A.18), (A.26), (A.27) and (A.28), one obtains
the following theorem:

Theorem A.2 Assume the conditions (A.4) and (A.5). Let A =[E — 8E, E 4+ §E] be an
interval of the energy with 8 E > 0. Then the following inequality is valid:

Prob[dist(c (H,.4), E) < 8E] <EA[Tr Q, 4(A)] < CwK3|lglloS E|A| (A.38)
with some positive constant Cyw and with
K3 = [M + Enax (A) [Unin) Ko K ||| o] Supp ue|"©. (A.39)
Here E A[- - -] is the expectation with respect to the random variables on a region A C R¢.

Remark Consider the present system with the unperturbed Hamiltonian (2.2). The posi-
tive number K, behaves as Ky ~ Const x B~! for a large B as in (A.7). From the defini-
tion (A.25), Emax (A) ~ Const x B for a large B. Substituting these into the above expression
(A.39) of K3, one has K3 ~ Const x B for a large B. From this observation and the above
theorem, one notices that the upper bound for the number of the states in the energy interval
with a fixed width § E is proportional to the strength B of the magnetic field for a large B.
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Appendix B: Proof of Lemma A.1

Following Combes and Hislop [41], we give the proof of the Kotani-Simon lemma [47].
We begin with preparing the following lemma:

Lemma B.1 Write H, 4 = Ha’)’A +Aalta 4. Let v be a nonnegative function satisfying u, o >
v, and define

KO E—i8)=v"*(H , + Mg — E+i8) "v'? (B.1)
for E€Rand é > 0. Then

2
dA—"=K(, E — B.2)
R A24A2 ( (
for Ao > 0.
Proof Since K (A, E —i6) is holomorphic in A in the upper half-plane, one has
)"2

di KM E—id) =miK(iXo, E —i$). B.3
/R vl ) = hoK (iko ) (B.3)

Note that

—ImK (i), E —i5)
=02 (H), , — ikottan — E —i8) " (Aot s + 8)(H,, , +irouta s — E +i8)"'v'?
> aoK (ido, E — i8)*K (ido, E — i5), (B.4)

where we have used the assumptions u, 4 > v and § > 0. This implies || K (iAo, E —id)|| <
Ay ! Combining this with the above (B.3), one has the desired result (B.2). O

Proof of Lemma A.1 Let AD A and A # A. Using Stone’s formula, one has
1
(0200 (A" p) < — lim Im / dE(p,v'*(H, 4 — E+i8)""v'?p)  (B.5)
A

for any vector ¢. Further,

22
dha 12 wn(A 1/2
/R E +k2(¢ V700, 4(A)V " 0)

%llm dE/dx @ KO E—ip 2 IAllel” B0
7'[

by using Fubini’s theorem and Lemma B.1. Here Ao > 0, and K (%, E —i§) is given by (B.1).
Since g € Lo (R) with compact support from the assumption, one has

AZ A2
[ 1186000 a0 4

= SUPg(?») [A] (B.7)

for any A¢ > 0. This proves the bound (A.16). |
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Appendix C: A Decay Estimate of Tb(,i;

In this appendix, we follow Barbaroux, Combes and Hislop [18], in order to estimate Tb(f;
that appear in Appendix A. The result is summarized as the following proposition:

Proposition C.1 Let v, w be bounded functions with a compact support, and suppose
dist(supp v, supp w) = r with a positive distance r. Then

Const X [[v]loollw oo
- Kz)(gmin - ||V07||oo)

Ry 4)? <
lv(Ro,a) wlli < a

x Ko(] suppv|""/2 + | supp wl”‘)/z)r”e“” (C.1)
with
20 Enin = 15 o)
o= Kk withk € (0,1) (C2)
3h
and with some positive number n, where Ry » = (Hy 4 + Emin) Land || -1 :=Tr|--].

The constants Ky and ngy are given in (A.5S).

Let £ be a region in R?. Then we denote by 352 the boundary of £2, and define the
subset £2;, of 2 as £, = {r € £ | dist(r, 3£2) > 8} with a positive §. With a small §, one
can take three regions 2V, i = 1, 2, 3 satisfying the following conditions:

suppvc 2V c Vel ce?®cel ce®ca, (C3)
|2®| < Const x r?, (C.4)
dist(suppw, 2%) > r/3, (C.5)
and
dist(suppv, I'V) > r/3, (C.6)

where 'V = .Q(')\.Qi(nl), and we also write ') = .Q(")\.Qi(;) fori =2,3.
Let ¥; € C2(A), i = 1,2, 3, be three nonnegative functions satisfying

Xiloo =1 and  Xi|po0 =0. (C.7)
In the following, we denote by x, the characteristic function x @ of the region I'® for
i=1,2,3, and write Ry; = Ry o0y = (Hp o) + Emin) ! for i = 1,2, 3. Next introduce the
geometric resolvent equation,

XiRo,.a = Ro,ixi + RoiW(Xi)Ro,a (C.8)

fori =1,2,3, where W(---) is given by (5.7).
Using (C.8) and v X, = v, one has

V(Ro,4)*w = vX2(Ro 4)*w = vRy2%2 Ro aw + Ry 2 W (7%2) (Ro,4)*w. (C.9)
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The first term in the right-hand side can be rewritten as

VRo2 %2 Ro aw = v(Ro2)* W (X2) Ro aw
= v(Ro2)*W(%2) X3 Ro, aw
= v(Ro2)*W (%2)RosW (33) Ro, aw (C.10)
by using ow = x3w =0, W()x2) X3 = W()2) and the geometric resolvent equation (C.38).
Therefore
[vRo2 %2R0 awlli = [V(Ro2)*W (X2)RosW (X3) Ro awll1
< lvRo2ll21Ro2W (X2) RosW (X3)Ro, aw 2
< lvRozll2lwRo A W*(X3)Ro3W*(¥2) Ro2l2
= lvRo2ll2llwRo, 4 x5 W*(%3) Ro3 W™ (X2) Ro2ll2

< llvRoall2llwRo A x3HI1W* (X3) RosW* (X2) Roz2 2, (C.11)
where we have used x;W*(x3) = W*(X3), the equality |A*|l, = ||A|l> and the inequality
IAB|; < ||All2]| B> for bounded operators A, B. The norm || - - - ||, is defined as || A||, :=

+/Tr A*A for a bounded operator A.
The second term in the right-hand side of (C.9) can be written as

VRo2W (32) (Ro, a)*w = vZ1 Ro2 W (%2) (Ro, a)*w
= vRo 1 W(X1)RoaW (%2) (Ro.4)*w (C.12)

by using vx; = v, 1 W(x2) =0, and the geometric resolvent equation
X1Ro2=Ro 131+ RoaW(X1)Ro2. (C.13)
Therefore the norm can be evaluated as

lvRo2W (%2)(Ro.4)wlli = lvRo1 W (X1)Ro2 W (3X2) (Ro.4) w1
= [[vRo.1 x; W (X1) Ro2 W (X2) (Ro.a) wlly
< llvRo, X1 W (1) Ro2 W (%2) (Ro.4) wlly
< lvRo1 x; W (X1) Ro2W (X2) Ro.all2ll R, awll2,  (C.14)

where we have used the identity x; W (x1) = W (}1).
Combining (C.9), (C.11) and (C.14), one has

[v(Ro.4)*wlli < llvRo %2R0 awll1 + [lvRo 2 W (%2) (Ro,a) w4
< lvRozll2lwRo, 4 x5 II1W*(X3) RosW*(X2) Ro2 |2
+ IRo awll2lvRo.1 X1 W (1) Ro2W (X2) Ro. all2- (C.15)

In order to estimate the right-hand side, we use the following lemma:
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Lemma C.2 Let ¢ be a vector in the domain of the Hamiltonian Hy o . Then
[W*(X3)Ros W (x2)¢ll < Const x [l¢]|, (C.16)

where the positive constant in the right-hand side depends only on the cut-off functions, X,
and x3.

Proof Note that

IW*(%3) RosW* (R)ell < IW* (1) R'5 NI Res W* (R2)oll. (C.17)
Using (5.9), one has
IW* (%) Ro5 |l < —||(on (P +eA)R; oAl (C.18)

The first term in the right-hand side can be estimated as follows: Using the Schwarz inequal-
ity, one has

(W, Ry5(P+eA) - (V) (VI3) - (p+ eA)Ry/3 )

< /W R+ AR y)

<\ R (D + eA) - (VI VP (V o) - (b + eA)RY )

<V2m VT3l I (V) - (p+ eA) Ry 3l (C.19)

for any vector v, where we have used

1/2

12
R032

<1 (C.20)

which is derived from the assumption Euin > ||V, [loo. As a result, one obtain

1(VZ3) - (P + ARSIl < v2m 1|V 73]l o- (C21)
Substituting this into the right-hand side of (C.18), one gets
. h2 A%l
IW*(%3)Ry5 I < h,/ 1V 731l + 2 (C22)
e mm ” V ||OO

Using (5.9) again, one has

IRys W*(Z2)ell < —||R”2

(AX2)<.0|| (C.23)

The norm of the first term in the right-hand side can be evaluated as

(0, (VX2) - (P +eA)Ro3(p +eA) - (VX))

<11V el @, (V72) - (B + ) Ro3(p + €AY Ros (p+€A) - (V52)9)

< V2m Vil sl RYs (0 + eA) - (Vi)gll, (C24)
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where we have used the Schwarz inequality and the inequality (C.20). Therefore,

IRy3 (0 +eA) - (Vi)gll < V2me[||V Tl ol (C.25)
Substituting this into the right-hand side of (C.23), one gets
.- m, 2 AR
IR W* (el < {h, [ SNV Rallloe + 5 — == Hlg . (C.26)

¢/ Emin — 1Yy lloo
The bound (C.16) follows from (C.17), (C.22) and (C.26). ]
From this lemma, immediately one gets
[W*(%3) Ro3W*(X2) Roz2ll2 < Const x || xR 2l (C.27)
In the same way,
W (%1)Ro2W (X2)Ro.ll2 < Const x || x,Ro.ll2- (C.28)
Substituting these two bounds into (C.15), one gets

lv(Ro,4)*wll; < Const x [[[vRozll2ll x5 Ro2ll2llwRo 4 x5l
+ IR0, awll2l x5 Ro. all2llvRo, 1 1 II1- (C.29)

Note that the ground state energy E, of the Hamiltonian Hy 4 satisfies Ey > — ||V [lo-
Taking

V2 Enin = 1V o)
B= 7

in the bound (D.32) in the next Appendix D, one has

k  withk € (0,1) (C.30)

lvlloollwllo —pr
k2) (Emin — Il V()_ lloo)

where r is the distance between the supports of the two functions v and w. Combining this
inequality, (C.5), (C.6) and (C.29), one has

lvRp ow| < 1 for a region 2, (C.31)

Const X [|v]leolwlloo
—2)(Emin — V5 llso)
[llURo,zllz

vl

Ro 4)? <
lv(Ro, ) wlli < a

| Ro, awll2

llx3Ro21l2 + ll x5 Ro, 4 ||2]€_w, (C.32)

lwlloo
where o = /3 with the above § of (C.30). Further,

Const X [Vl w0
— k%) (Emin — ”Vo_”oc)
x Ko(| supp v|"0/2 + | supp w|"/?)| 2@\ 2P |"0/2e=er (C.33)

Ro 4)? <
lv(Ro, A) wll; < a

by using the assumption (A.5). Thus one gets the desired bound (C.1) from the bound (C.4)
on the region 2.
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Appendix D: Decay Estimates of Resolvents

In this appendix, the exponential decay bound for the resolvent (H, — z)~! is obtained by
using the Combes-Thomas method [40].

D.1 The General Case

For the general case with Ap # 0, we use the improved version [18] of the Combes-Thomas
method [40]. The results are given by Theorem D.2 and the bound (D.32) below.
Consider the d-dimensional Hamiltonian,

Hy = (p+eA)’ +Vy, D.1)

2m,

with a general vector potential A € C'(A, R?) and a general electrostatic potential V, €
L>®(A). Let j; € C(R?) satisfying j; > 0, supp js C {r| [r] < &} with a small § and
fRd Js(r)dxy---dx; = 1. Let £2 be a bounded region with smooth boundary, and define
o(r) = dist(r, £2). Following [15], we introduce the smooth distance function p(r) =
Js * p(r). Note that, for 8 > 0,

1

e PPH PP = (p+eA —ihBVp)> +V,
h* B> , ihB
— Hy— = (Vp)’ = —2[Vp- (p+eA) + (p+eA)-Vpl. (D2)
2m, 2m,
We write
e PPH e = Hy+iBJ (D.3)
with
" h2 2
Hy=H,— h (Vp)z,
2m,
B (D.4)
J= ~3 [Vo-(p+eA)+ (p+eA)-Vpl.
We take Cy > 0 satisfying
_ hzlgz 5 5
—IVilloo — o, I1Vellls + Co >0, (D.5)
where Vf = max{%V,, 0}. Then one has
Hy+Co=Co>0 (D.6)
with some constant Cy. We define
Hy,—E —is
XE+is =——— for E, ce R, (D7)
H, + Cy
and define
Y =(Hy+ Co) T (Ha+ Co)™'2. (D.8)
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Let us estimate the norm ||Y || of this operator. From the expression (D.4) of the opera-
tor J, one has

h - - - -
1Y < W[IIR”ZVP ~(P+eA)R?|+|R*(p+eA) - VpR'*|], (D.9)

where we have written R = (H, + Co)~'. Take ¥ = R'/?¢ with ¢ € L?(A). Using the
Schwarz inequality and (D.6), one has

(¥, (p+eA) - VoRVp - (p+ eA)y)

< 0+ eAY) x\[ (0. (b + eA) - VoRIVpERY p - (p+ eAYD)

< V2 19l g Iy (0. (b + eA) - VpR2V - (p + eA))

2m, ~
E,/ C |IIV/>|||oo||§0||\/(w,(p+eA)-VPRVP-(I’JreA)w)- (D.10)
0
Therefore
- 2m,
(¥, (p+eA) - VoRVp - (p+eA)y) < anwmniouwnz. (D.11)
Similarly

(¥, Vo - (p+eA)R(p+eA) - Voy)

= IIIVPIIIOCIII/fII\/(W, Vo (p+eA)R(p+eA)2R(p+eA) - Vo)

< \/2me|||Vp|||oo||1ﬂ||\/(1ﬂ7 Vp-(p+eA)R(p+eA)-Vpy). (D.12)
This implies

(¥, Vp-(p+eA)R(p+eA) - Vpyr)

2 ) _ 2m, 2 2
=2mIIVpllllvI® < Co Vol el (D.13)
Substituting these bounds into (D.9), one has
V2h
Y| < 1V olllso- (D.14)
meC()

Consider the situation that the Hamiltonian H, has a spectral gap (E_, E.), and we
take E € (E_, E,). We define dy := dist(c(Xg) N R*,0), and uy = Piu, where P, is
the spectral projections for X onto the subspaces corresponding to the sets o (Xz) N R*,
respectively. We take 8 satisfying E, — E > h*82(||Vp||%,/(2m,). Then one has

E. — E-DBIVoll3/Cme) _

dy > = 18 (D.15)
* E++C0 *
and
E—-E_
> ———=:5_. (D16)
E_+Cy
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Lemma D.1 Suppose that the parameter B satisfies the condition,

O<ﬁ<%min{%\/&r—8, E} (D.17)
Then
X e+ 8l = 3 minid, el (D.18)
fore eR.

Proof From the bound (D.14) for ||Y || and the assumption on 8, one has

1 1
BIYI < 5/6:6- < S /dud. (D.19)

Note that Xg, ;. = Xg — ieR with R = (H A+ Co) !, Using this and the Schwarz inequality,
one gets

Nl (X pie +iBY Jull = Re((uy —u-), (Xg = ieR+ifY)(uy +u-))
> dfluy|)? +dflu|* — 28 Im(u, Yu_)

> %(014r||14+||2 +d_|lu_|*). (D.20)

This implies the desired bound. O
We write

B= h”mw\/ﬁxx (D.21)

in terms of the parameter « € (0, 1). Substituting this into (D.15), one has
) Ev (1 2. (D.22)
—K .
T E+ + CO

Further, by substituting these into the bound (D.17), the maximum value of « satisfying the
bound is obtained as

P :\/ GE—E-) 1. (D.23)

Co(E—E_)+16(E. + Co)(E_ 4+ Cy)

As a result, we can take

p— V2m, Co(Ex —E)YE—-E) . (D.24)

AllIVollle | Co(E — EZ) + 16(E4 + Co)(E— + Co)

Theorem D.2 Let E be in the spectral gap (E_, E.) C R of the Hamiltonian H,. Let
v, w be bounded functions with a compact support. Suppose that the boundary of supp v is
smooth. Then

lo(Hs — E —ie) " 'w| < Cillvllsclwlle™  fore €R, (D.25)

@ Springer



906 T. Koma

where r = dist(supp v, suppw), B is given by (D.24), and

(D.26)

E,+C E_+C
C1:Consth0_1max{ ++ Co + 0}

(1—x2)(E;,—E) E—E_

with k given by (D.23). The two real constants Cy and CN’O satisfy the conditions H+ CN’O >
Co > 0and (D.5).

Proof Let ¢ be in the domain of the operator H,. Then

I(Hy+iBJ — E —ie)pll = |(Ha + Co)/*(Xpyic +iBY)(Ha + Co) ol
> CoP (X psie + iBY)(Ha + Co)' ol

1 , -
= € minldy. d_} (A + Co) o)

v

1 .
5 Comin{d,. d_}llell, (D.27)

where we have used the inequality (D.18) and H, + Co > Co. Taking

1

—Bo
Hy—FE—ie

p=e efou, (D.28)

one has
le " (Hy — E —ig)~"ePull < Cyul, (D.29)

where we have used (D.3), (D.15) and (D.16). Choosing §2 = supp v in the definition of the
distance function p(r) and using this bound (D.29), the desired bound (D.25) is obtained as

Const X |[v(Hy — E —ie) 'w|| < |lve P (Hys— E —ie) 'w|
< vllxlle™?(Hy — E —ig) e e PPu|
< Cilvllslle™ w]

< Const x Cy|[v]lsollwllece™ . O (D.30)

Next consider the case with H, > E. Then the Schwarz inequality yields

@l (Ha — E +iBJ)¢ll = Re(p, (Hy — E +iBJ)g)
= (¢, (Hs — E)g)
> [Ey— E — R*B*[IVpllI%/Cm)]lell (D.31)

for ¢ in the domain of H,. Here E is the ground state energy of H,. Therefore, in the same
way as in the proof of Theorem D.2, one has

; 1 wH - Const x [|[v]lo lw]leo —pr
Hy—E |~ Ey—E—-RB2IVpllZ/Q2m,.)
2m(Eg — E)
for0<p < >0 =) (D.32)
MIVollleo
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where v, w and r are the same as in Theorem D.2.
Finally, we consider the decay of (H, — E — iy)~! with y # 0. To begin with, we note
that

@Il Ha — (R*B%/(2m))(Vp)* — E —iy +iBJ1p|
> (¢, [Ha — (B2 B/ (2m.))(Vp)* — E — iy +iBJ1p)]
=@, [Has — (12B%/2m.))(Vp)* — Elp) 2 + (¢, (y — BI)@) 2. (D.33)

Let E’ be a real number satisfying

h22
E/>E~|—2/3

Vel + Ca (D.34)

e

with a positive constant C,. Then if the vector ¢ satisfies (¢, Hy) > E’|¢|?, the right-hand
side of (D.33) is bounded from below by Cs||¢||>.
Thus it is sufficient to consider the case that (¢, Hy@) < E’|l¢||*. Note that

(@, v = BN = [Iylllell* = Bl(@, Jp)lI. (D.35)

The expectation value in the right-hand side is evaluated as
h
(@ Jo)l = - =1(¢. V- (p+eA)p)|

I
= 1Volllsllelly (@, (p+ eA)2p)

2
=h m_|||vp|||c>o”§0”\/(¢’ (Ha +[Valloo)®)

< BlIVPlllooy/2(E" + [[Valloo) /me @] (D.36)

For a given y, we choose a small 8 and a small C, to satisfy

Iyl > BRIV ollloy/2(E" + [Valloo) /me + Co. (D.37)

Then these bounds yield

(g, (y — BN = Callg]>. (D.38)

This implies that the right-hand side of (D.33) is bounded from below by the same C,||¢||>.
Thus, in both of the cases, one obtains

I[H — (B*B*/2m))(Vp)* — E — iy +ipJ1ell = Callg. (D.39)
In the same way as the above, this leads to the decay bound,
lv(Hs — E —iy) 'w|l < Const x C; ' [v]loo | wloce ™" (D.40)

Clearly, for a small |y|, both of the parameters 8 and C, must be small. But the resolvent
always decays exponentially at large distance for any y # 0.
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D.2 The Landau Hamiltonian with Ap =0

Following [15, 16], we obtain the exponential decay bound (D.85) for the resolvent in The-
orem D.7 below.

Consider the two-dimensional single electron in the uniform magnetic field and with a
electrostatic potential V4. The Hamiltonian has the form, H, = H, + V4, on the rectangular
box A with the periodic boundary conditions as in Sect. 2, where Hy is the Landau Hamil-
tonian (3.1). We also impose the condition of the flux quantization, |A|/ (2712%) e N. We
assume V, € C%(A). We denote by Qé’f; the spectral projection onto the n + 1-th Landau
level whose energy eigenvalue of H| is given by &, = (n + 1/2)hw,. with v, = eB/m,. We
introduce one-parameter families of operators as

H(B)=ePHe,  H,B)=H.(B)+Va, QLB =e Qe (DA

for B € R. Here the distance function p(r) is given in the preceding subsection. We write
Hy.(B) = H. + iBJ, where the operator J is given by (D.4) with A = A, and

hZIBZ

m,

H, =H — (Vp)2. (D.42)

Lemma D.3 Let z be a complex nmziber satisfying dist(a(I:IL), 7) > hw. /4, where G(I:IL)
is the spectrum of the Hamiltonian Hy . Then there exists k(z) € (0, 1) which depends only
on z such that the following bound is valid:

Iz = HL(B)I 'l < hi for any real B satisfying |B] < k(2)€5". (D.43)

Proof Note that, for a vector ¢ in the domain of the Hamiltonian and for a small 8,
(AL = z+iBDell = I[1 +ipJ (A —2)" " 1(HL - 2)¢|

> [1— B (H. — 2) " |1TI(HL — 2l
> [1—|BIIJ (. — 2)~"|1dist(o (HL), 2) ¢l

1 -
> Zhwc[l—I,BIIIJ(HL—Z)"II]IIQZJII- (D.44)

Therefore it is sufficient to show |B]|| J(I:IL —2)7!| < 1/2 for a small B. Since

iR? h
J= Ap ——Vp-(p+eAy), (D.45)
2m, m,
one has
~ 1 2
JHL—2)7 || < A _
|/ (H. I o, I plloodist(a(HL), >
2h ~ 1
T IV pllloo max || (ps + e Ao ) (HL = 2) 7|l (D.46)

e

The norm of the operator in the second term is evaluated as
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(9, (HL — 297" (ps + Ao )*(HL — 2) ')

5 B 2ﬂ2
<2m, (¢, (H, — %) (Hy + o

|||Vp||| Y(HL —2) ")

(D.47)

S

1 h2 21Vell2/m,
§2me[ JrIZIJr el ,OIIIOO/(M)]|| o

dist(c (Hy), 7) dist(o (Hp), 2)2

Combining this, (D.46) and the assumption on z, the desired condition for 8 in (D.43) can
be obtained. O

We introduce the integral representation of the projection Q(()"A as

(n) __ 1 / 1
0oa=75=5 [ dz ; )
’ 2mi y 7 — HL

(D.48)

where the closed path y encircles the spectrum of the n + 1-th Landau level. Further we
choose the path y such that the length of the path is bounded as |y| < 3hw,, and that the
distance from the spectrum of the two Hamiltonians H; , Hy satisfies

dist(y, o (H)) > hw,/4 and  dist(y, o (H)) > hw. /4 (D.49)

for any real B satisfying |B|ll|Vplllo < €5 !, Then, from the above lemma, there exists «, €

(0, 1) which depends only on the index n such that the representation,

(n) / 1_
Qp.a(B) =7~ /ydz T (D.50)

is well defined for any B satisfying |B|[||Volllco < K,,ZEI.

Lemma D.4 Assume the above condition |B||||Vo|lle < Knﬁgl. Then the following bound
is valid:

ILQE"L(B). Valll < Cflols (D.51)
with
w48
Coo= - [ZB IAValloo 4+ 2(4 4+ +/8n 4+ 29) max [|9; V4 ||Oo], (D.52)
J=X,y

where we have written V = (0y, ).

Proof Note that

1 1
APrVal =7 ] 4 z—HL(m A
1 1
=— | d7 H, 7. D.53
zm/y : H(ﬂ)[ WOV T Y

The commutator in the right-hand side is computed as

K2 ih

[HL(B), Val = 5
ne

(D.54)
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where we have written IT = (11, IT,) = p + eAy — iifV p. From these observations, one
has

11O (B), VAll

3712wC
- 27rm

[—IIR(ﬂ)II IAVAlleo + IR(B)]l m max X 119:Valloo >, R(ﬂ)ll]

Jj=x,y

48
< ;[ﬁénAvAHOﬁ

VAlloojH=1§>§ IIUjR(ﬂ)II], (D.55)

where we have written R(8) = (z — Hy.(B))~" for short, and used the bound (D.43). There-
fore it is sufficient to estimate ||/7; R(B)||. Note that

Y T RBIP = D (R(B)e, [T} TT;R(B)p)

Jj=x,y Jj=x,y
=2m.(R(B)¢, HL(B)R(B)p)
+2ihp Z (R(B)g, (3;p)IT; R(B)¢). (D.56)

j=x.y

Further
max IIT;R(B)glI* < 2m.(lollIR(B)ell + IZ'[IR(B)el?)

+ 4BV olllso | R(Bel max T R(B)ell

(D.57)

32m,
N ~/heB
where we have used (D.43), |Z'| < dist(€,, 7)) + &, and BV |l < Egl. Solving this, one
has

T, R(B)I < 4+ +/8n+29) forj=ux,y. (D.58)
\/_ v/
Substituting this into (D.55), the bound (D.51) is obtained. O

Lemma D.5 For any given € € (0, 1), there exists k, € (0, 1) such that k, . depends only
on € and the index n of the Landau level, and that, for any real B satisfying |B|||IVPlllco <
KMEEI, the following bounds are valid:

105 (B) — Q§41l < € (D.59)

and

ICHL(B) — D054 (B) — Q541 < ehav,
for z satisfying dist(z, £,) < A€max (D.60)

with a positive constant A&y .
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Proof Note that

‘ =

0 (B) — Qg'y =

dz/[ ! }
7 —H.(B) 7 —H.

/dz/ (HL(B) — HL)
¥

— Hy (/3) 7 — H

[\®]
)

i

“\ “\
oyl

fd/ [hzﬁz(v )2+'51] ! (D.61)
yzz—HLoe) ame T T

for any B satisfying |8| < «,¢5'. Therefore the norm of the left-hand side is evaluated as

105 (B) — O I
< ol (v o)
=2r 2|7 —HL(ﬂ) 7~ H
12
< ;(%éﬂznwmnio + €, (D.62)

where we have used the bound (D.43) and || (z/ — H)"!|| < 4/(hw,), and we have chosen
so that, for a given small €',

<€ (D.63)

Iﬁl‘f

which can be proved in the same way as in Lemma D.3. The resulting bound (D.62) with a
small B implies the desired bound (D.59).
In order to obtain the second bound, we note that

(HL(B) — D[Qg ) (B) — O4)

5 [ [ — ( ﬂ)]< HLB) — HU) ——— (D.64)
In the same way as in the above, the norm is estimated as
ICHL(B) — [ Q54 (B) — Q341
< Jo <9 +8 Af”‘) H (HL(B) — H) 5 H (D.65)

Here we have used |z — z| < dist(&,, 2') + dist(&,, z7) < hw. + AEnax. The norm of the
operator in the right-hand side is already estimated in the above. O

We write z = E +iec with E, e € R.
Lemma D.6 Suppose &, + |V oo + 8_ho. < E < &y — |V oo — 284 Fi0, for n =

0,1,2,... with some positive constants Si and with £_; = —oo. Let ¢ be a vector in the
domain of the Hamiltonian. Then the following bound is valid:

I(HAB) — 2[1 — Q54 el = Chew (I[1 — 054 e (D.66)
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for any B satisfying |BIIIVellloo < K/ 03, where
B

S , orn=0;
=1 . Y (D.67)
' min{é,,8_}/2, forn=1,2,...,

and
) \/Z, forn=0; D68)
o = _ .
! min{eglmp“m/mﬂm, 2r§+}, forn=1,2,....
Proof We write ¥ =[1 — ((f}\]% and decompose the vector ¥ into two parts as
pr=Y Qi4p and ¢ =) 00 (D.69)
j>n j<n

Then one has

I I (HA(B) = 2%l

g,
>Relgy —¢_, | Ha— E— W(V’O) —ie+iBJ Jor +o-
> hod oI + hod_llg-|I* — 28 Im(p,, Jo_), (D.70)
where we have used
Enrt — Vi lloo — E = 2BV pll1%/2m,) = b4 heo, (D.71)
and
E—& 1 — V]l = 8_hoo, (D.72)

which are easily derived from the assumptions. Clearly, in the case with n = 0, one has
¢_ =0, and so the statement holds. For the rest of the cases, we use the following bound:

K2 h
(@4, Jo-)| < 5 IAplo oL@l + —I(p+, Vo - (p+ eAg)p_)]|
me me
n? h 5 5
=3 AP llocll@s llg— Il + —/ (@, IV oIP0:) (9, (p + eAg)?p-)
M, me
h? 28,
< <2 APl + A lIIIVpllloo>ll<p+llll<p-ll, (D.73)
me me

where we have used (D.45) and the Schwarz inequality. Combining this, (D.70) and the
assumption on S, the desired bound is obtained. 0

Let us estimate ||(H4(8) — 2)¢|| for a vector ¢ in the domain of the Hamiltonian and for
z € C. We take B satisfying |B|[[|Vellleo < Egl min{k, , k, } for a given €. Note that

105" (HA(B) — 2ol = lle P (H, — 2) Q5" e o

— 10 (HA(B) — 209 — e PP (Hpy — 2) 054 eP gl (D.74)
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The first term in the right-hand side can be evaluated as

le ™ (Hpy — 2) 054 e ol = 11(Ex + Va — )¢ 7 05" e g
> AE| Q5 (B¢l
> AE| 00l — AENLQS, (B) — O 1ol
> AE| Q5" ol — eAE]lg]l, (D.75)
where
AE =inf|&, + V4 — Rez| (D.76)

and we have used the inequality (D.59). The second term in the right-hand side of (D.74)
can be evaluated as

1064 (HA(B) — 209 — e (Hs — 2) 03" ™o
=11Q0") (Ha(B) — )¢ — (Ha(B) —2) 00"y (B)#ll
< 11Q6"% — QA (BIHAB) — 2ol + 1125 (B). Ha(B)]ell
< 1Q6"h — Qoa(BIHAB) — el + 11254 (B). Valol|

<ell(Ha(B) — 2ol + Cloeslipl, (D.77)

we have used the inequalities (D.51) and (D.59). Substituting these bounds into (D.74), one
has

(1 +e)lI(Ha(B) — 2)9ll = AE[ Q7" 0l — (€AE + Cfots)oll. (D.78)
Note that
11— Q8" (Ha(B) — 2ol
> [[1 = QW (BI(HAB) — ol — Q") (B) — QW I(HA(B) — )l
> |(Ha(B) — D)[1 = Qg (B¢
— 10Q4"4 (B), Ha(B)lpll — Q5% (B) — Qo a(HA(B) — ¢
> [(Ha(B) — 2)[1 — Qg 4ol
— I(HA(B) = LQGA(B) — Qi hloll — 11Q5 4 (B). Valoll
— 10Q5"%4 (B) — Q4 W 1(HA(B) — 2)ll. (D.79)
Using the inequalities (D.51), (D.59), (D.60) and (D.66) for this right-hand side, one has
(A +e)l(Ha(B) — Dol
> CM ool = Q34 1¢ll — (eha + €l Valloo + Clotp)ll@ll.  (D.80)

Combining this with the above inequality (D.78), one has
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1 1
a +6)<AE + o )II(HA(ﬁ)—Z)f/)II

S SOt UL AL —Ces LU Y e osy
- ol ho, AE CW heo,

Assume that the energy E satisfies the condition in Lemma D.6 with the positive con-
stants 6+ which are independent of the strength B of the uniform magnetic field. Under this
assumption, Cé", and «, in Lemma D.6 can be chosen to be independent of B except for a

small B. Further assume that AE satisfies AE > AE > 0 with some constant A€ which is

independent of B. Then there exists Bé"l) such that, for any B > B(g"l) s

COesl(AE)™ + (C M hw) ™' < 1/3. (D.82)
Moreover we can choose € satisfying
{1+ (CoD) T T+ [ Valloo/ (heo)T) < 1/3. (D.83)
Substituting these into the above bound (D.81), one has
Con(AE) ' (Ha(B) — )¢l = gl forany B > By, (D.84)

where the positive constant Céf'; depends only on the index n. Therefore a similar decay
estimate for the resolvent is obtained in the same way as in Theorem D.2. We summarize
the result as

Theorem D.7 Let v, w be bounded functions with a compact support, and suppose that
the boundary of the region supp v is smooth. Write z = E + ie with E, ¢ € R. Assume that
the energy E satisfies the condition in Lemma D.6 with the positive constants 8. which are
independent of the strength B of the uniform magnetic field. Further assume that AE of
(D.76) satisfies AE > AE > 0 with some constant AE which is independent of B. Then
there exist Bé"l) and k, which depend only on the index n of the Landau level such that

(n)

C
lv(Hy — E —ig)~ w||<A—||v||oo||w||ooexp[ &,L5'r] forany B> B{"). (D.85)

Here r = dist(supp v, supp w) and the positive constant C(()'f; depends only on the index n.

Appendix E: Proof of Lemma 5.1

The first inequality (5.18) can be obtained as
lloi (pi + e A RY |1
= (¥, R*(p; + eA)e; | (p; + eA)RY)
< lles |12, (¥, R*(p: + eA)*RY)
<2m s 2RI+ UE|+ 1(Vy + VO ol IRIPHIV I (E.D)
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for i = x, y and for any vector . Here we have used

> R*(pi+eA)’R < 2m R*[Hy + [|(Vy + V)] R
i=x,y
<mA(R+ R +20E|+ (Vg + V,) |l R*R).

In order to get the second inequality, we first note that

(pi +eADR(p+eA) - ap|?
= (¢, (p+eA)R*(p; +eA)?R(p+eA) - ap)
<m.(¢,a- (p+eA)(R+ R)(p+eA) - ap)

+2m [|El+ (Vg 4+ V) llocl(@, 0 - (p+ eA)R*R(p + €A) - o).

Using the Schwarz inequality, one has
(¢, (p+eA)R*R(p + €A) - ap)
< lllellocll@llv/(¢, o - (p+eA)R*R(p + eA)?R*R(p + €A) - ag).

Combining this with the inequality (E.2), one obtains the bound (5.20). Similarly,
(@, 0 (p+eA)R(p +eA) - ag)|
< lellloollglv(@, @ - (p+eA)R*(p + eA)’R(p + €A) - ag).

Combining this with the inequality (E.2), one obtains
(g0 (p+eA)R(p + eA) - ap)|’
<mellleel |2, I@l*{|(@. - (p+ eA)R(p+eA) - ag)|
+UEI+ (Vg 4+ V)llool(@. - (p+ eA)R*R(p + €A) - o)}
<2melleel |2, @l*|(@. a - (p+ eA)R(p + €A) - o)
+4ml||leel 1% fr.r (1 + f.) ol

where we have used the bound (5.20). Solving this quadratic inequality, one has

(@, 0 (p+eA)R(P+ eA) - ag)| < 2m.|lleel[13,(1 + fe p)llol*.

(E.2)

(E.3)

(B4)

(E.5)

(E.6)

(E. 7

Substituting this and (5.20) into the right-hand side of (E.3), the desired bound (5.19) is

obtained.

Appendix F: Proofs of Lemmas 6.2 and 6.3
For the purpose of this appendix, we prepare the following three lemmas:

Lemma F.1

(i) Let £,¢ be odd integers larger than 1 such that €' is a multiple of £. Let A% be
the event that no two disjoint y-bad boxes of size 3¢ with center in Iy N Asy(z) exist.
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Assume Prob[ Az (- - -) is y-good] > 1 — n with a small n > 0. Then Prob(A&%) > 1 —
(5 /10,

(ii) Assume that the event AZ° occurs. Let n,v € Iy such that Ay(n) C Ay (z) and that
AcV) N (Asy D\ AL, (2)) 0. Then

) Rspr ,(E + i) xe W < (8¢ ) /4| Rspr ,(E +ie)|. (F.1)

Proof The statement (i) follows from elementary combinatorics.
(i1) Using the geometric resolvent equation,

X3 (W Rsy ;= Rypuxd, (W) + R3¢ Wi, (W Rsp 5, (F2)
one has
Xe ) Rse 2 x0 (V) = xe (@) x2, (W) Rser 50 (V)
= Xe(U) R3g.u W2, (W) Rsr 5 X (V)

= Xe(W) Ryp o W3, () > Xe@Rse,xe(V),  (E3)
el N(Azg )\ A, (w)

where we have written R, , for R, ,(E + ie) for short. We can choose u; from the set of @
so that || x¢ (@) Rsy , x¢ (V) || becomes maximal. Thus one has

I xe @ Rser o xe (W) || < 8™ I xe(r) Rser 2 xe (V) | (F4)

when Asg(u) is y-good. Since the norm of the operator in the right-hand side can
be estimated in the same way, one can repeat this procedure and construct the points,
U, u,...,u €Iy, as long as Asg(ug_;) is y-good and does not hit A,(v) or 9 Asp(z).

The same type of estimate can be applied to v as a starting point as follows: Using the
adjoint of the geometric resolvent equation,

Rsy 2 x3 (V) = x5 (V) Ry + Rsy 2(W3,(V))* Rae v, (E.5)
one has
Xe ) Rsyr 5 e (V) = Xe (W) Rspr x50 (V) xe (V)
= xe(W) Rsy (W3, (V)" Rag v xe (V)

= Xe(W)Rsp > Xe @)W (V) Raeyxe (). (F6)

FerpN(A3 (W\A¢(v)
Thus
e (o) Rser o xe (V)| < 8™ [l e (W) Rser o xe (v1) | (E7)
when A3 (v) is y-good. In the same way, the procedure yields the points, vi, v, ..., V;, and
one obtains the bound,
e (@) Rser 5 xe (DI < Be ™ [ xe () Rser zxe (V)| < 8e VY| Rsyr . (F.8)

This process moves in steps of £. The assumption that A2°°¢ occurs implies that there may be
only one cluster of overlapping y-bad boxes. The diameter of such a bad cluster is at most
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5¢. From these observations, one has that k 4+ j > |u — v|/¢ — 4 iterations can be performed
before the process stops on the both sides. Since [u—v| > ¢’ from the assumption, the desired
bound (F.1) is obtained. When the process hits the boundary of As, (z) without hitting a y -
bad box, we have £k > 2¢ or £j > ¢'. Therefore the bound (F.1) remains valid. O

LemmaF.2 Let £, ¢’ be odd integers larger than 1 such that €' is a multiple of £ and satisfies
0 > 40. Assume that the event A2 given in the preceding lemma occurs. Then

Il X0 () R3er o (Wi (2))|
N3 )
§6<Z) Be Y ALEL IRse 2I) + f5UEL 1R3¢ 2D Rser oIl (F.9)

where the functions, f, and fs, are given by

2

160
J4(IEL RN = 2Cs.0 + - Jmax {[19nn s @ oo} (1 + fE.r)

h 3
+2ﬁ<ﬁ) max (| A0 @)oo} (1 + fz.0) IR (E10)

and
24/2h
SSUEL IR = C5 IR + Cs. o1V X3 @Il
+2 max {110, x5 @l 10+ S0 IR
4h? s s
+ m_ ”I;Ilixy{”am)(y/(z)”oo}” |VX35/(Z)| loo (1 + fE R)- (F11)
Here
hZ
Cs.o= . 1A XSy @) lloo + (| Vol Gi30 (@) = X3 @) x5y (2), (F.12)
e

and the function fg g is given by (5.21).
Proof Using the adjoint of the geometric resolvent equation (F.5), one has
Xe' @ Rser X3 (@) (W3 (2))°
= X @ Rse s W3y (@)" + xe @ Rse s(W3p @)* Rar s (W3 (). (E13)

Therefore

I Xe () R3pr (Wi (2))* 0|
< |lxe (2) R 2 x50 (2) (W2, (2) |
+ X @) Rspr o (W2 (2))* Rapr (W2, ()"0 | (F.14)

for any vector ¢ in the domain of the operator p + ¢A.
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Let us estimate the first term in the right-hand side. Using the expression (5.9) of W - ),
one has

X @) Rser x50 (2) (Wi (2))* 0l

<Ilxe @) Rse 2 x50 @30 @) ||

h
+ — Z | xer () Rser 20i 30 (2) (pi + e Aol
me

i=x,y
(F.15)
where we have written
w s s
v (z) = EAXM (Z) + 8V 30 30 X3 (2). (F.16)

Using the bound (F.1), the first term in the right-hand side can be estimated as

Ixe (@) Rsp 213 @vse @@l < Y 1 xe @) Rsp o xe W | [vse @) ol

u,v
o\’ ,
< 12(?) Be ) sl Rse allll@ll. (F17)
The summand in the right-hand side in (F.15) can be written as

| xer () Rser 20i 3¢ (2) (pi + e Aol
= || xe (Z)Rse 2 W (@i 30 (2)) Rspr ,(pi + eAp)ol|
2

<
2m,

lxe () Rser (A 3¢ (2)) Rser o (pi + Aol

h
+t > e @ Rser 2(9;¢i30 (@) (ps + eAj) Rse o(pi + €A

e .
J=xy

ey’ AN n?
=6l ) B ) 1Rse 2| == max{l| A 3¢ @) llooHI Rser.2(pi + e Al

e

4h
== max (1ndnse @} (p; +eA) Rse a(pi + eA,-)<p||], (E18)

where we have used (5.9) and (F.1) again. From (5.19) and (5.20) with & = (1, 0) or (0, 1),
one has

IR(p: +eADell </2m,(1+ fe.&) 2RI el (F.19)
and
I(p; +eADR(p; +eADel <2m.(1+ fer)llel. (F.20)

Combining these, (F.15), (F.17) and (F.18), we have
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X0 () Rser o X3 (@) (W3, ()|
A%
< 6(?) Be 7)Y LU(IE, | Rse 2Dl Rser 2l - (F21)
Next let us estimate the second term in the right-hand side of (F.14). Note that
1(W3p ()" Raer (W3, ()¢ |
h
< Ci IRz allllell + m_cz?.w” R3p2(p +€A) - (Vx3, (@)gll

h 5
+ = Co.o Max {[|3h x50 (2) [l oo} E (p: +eA)Rap L@l
me =x,y

i=x,y
2
§
+ —5 max {[| 9 x3y (2) oo}
me m=x,y

x Y l(pi + €A Ray 1 (p+ €A) - (VX3 @)l (F.22)

i=x,y

where we have used (5.9). Thus we have

Il Xe' () Rspr o (W2, (2))* Rapr (W2, (2))* 0|

E, 3 o
56(7) Be ")/ UEL 1 Rser o) I Rser a1 (F23)

in the same way. Substituting this and (F.21) into (F.14), the desired bound (F.9) is ob-
tained. O

Similarly, one has the following lemma:

Lemma F.3 Let €, ¢’ be odd integers larger than 1 such that £’ is a multiple of £ and satisfies
0 > 4L. Assume that the event A% given in Lemma F.1 occurs. Then

W3, (2) Rapr o xe (@) |

N3 ,
56(?) Be 7Y f(E, | Rse 2D + f5EL, | Rse D1 Rser 2Nl (F.24)

where the function fq is given by

2

Je(EL IR =2Cs.0 + max {[[[Vém3e @llc} (1 + fr.x)

m, m=x
h 3
+zﬁ(ﬁ> max (| Ay a0 @) o)1+ fe.0) PRI (R25)

Proof Using the geometric resolvent equation, one has

W2, (@) x5y (@) Rsy 2 x0 (2)
= W’fg’ (Z)R%’,ZXL” (Z) + W}S[/ (Z)R3[Qz Wgy (Z)RSZ’,ZXZ’ (Z) (F26)
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Therefore

W3, (2) R3¢ 2 xe @) | < Wiy (2) x5y @) Rsp s xe @)
+ W2y (2) R s Wiy @) Rsy o 30 (@) (F27)

Since the second term in the right-hand side can be estimated in the same way as in the proof
of the preceding lemma, it is enough to estimate the first term. Using (5.9), one has

IW2, (2) X3¢ (@) Rse e (@) |

< llvse @ x3y @) Rse 2 x0 @) |

h
o 3 i+ eAD) @3y @) X3 (D) Rse e @) (F28)

e .
i=x,y

The first term in the right-hand side can be estimated by using the bound (F.1). The operators
in the sum in the right-hand side can be written as

(pi +eA)di 30 (Z)Rsy 2 xe (2)

= (pi +eA)Rsy ;W (@i 30 (2))Rspr X0 (Z)
2

I
= %(Pi +eA))Rsp 1 (Ad; 30 (2))Rspr 5 X (Z)

10
- ,’n—(pi + eA) R 1(p+ €A) - (Vi 30 () Rsyr axv (2). (F.29)

where we have used (5.9) again. Similarly the norm of the operators in this right-hand side
can be estimated by using (5.19), (E.1) and (F.1). O

Proof of Lemma 6.2 Assume that the event A2°° given in Lemma F.1 occurs. Then, from
the preceding three lemmas, one has

e Rae o(W3 ()| < Const x (€)* exp[—£'{y (1 — 4¢/¢') — 3log2/¢}]
X |E|(I[R3¢.2ll + [ Rse.z D | Rse.z |l (F.30)

and

W3y (2) Rae e || < Comst x (¢) exp[—€'{y (1 —4¢/¢') — 3log2/¢}]
X [E|(I[ R3¢zl + | Rse.z D | Rse 2l (F31)

with the probability larger than 1 — (5¢'/£)*n? for a large | E| and for large || R3¢, ||, || Rse ]l
In the Wegner estimate (A.38), we choose

BE) ™ = CwK;ligllool Ase| x 4(€)°. (F.32)

Then, for g =3, 5, one has
I Rgell < BE)™" (F33)
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with the probability larger than 1 — (¢)~¢ /4. Clearly, one has
| Ryell < Const x K5(€£)5+2 (F34)

for a large £'. Since the probability that each event occurs is larger than 1 — (¢/)7 /4, the
probability that the two events simultaneously occur is larger than 1 — (¢/)7¢ /2.
From these observations, the right-hand side of (F.31) can be bounded from above by

exp[—¢'{y (1 — 4£/¢') — 3log2/t — log(Const x K2|E|)/t' — (2& +T)logl'/€'}] (F35)

with the probability larger than 1 — (5¢'/£)*n? — (¢)~% /2 for a large |E| and for a large £'.
Since one has
3log2 log(Const x K32|E|) 10g(c0K§|E|)
e T v = v

(F.36)

with a positive constant ¢y, the proof of the lemma is completed. |

Proof of Lemma 6.3 Take ¢’ = £, and £ = {; in Lemma 6.2, and assume that Az, (---) is
a y,-good box with the probability larger than 1 —  with n = (£;)~¢. From the definition
(6.8) of £, we have

Lt
Ly

=162 =6 +86, with0 <86, <2. (F37)

Using this identity, " of (6.6) can be written as

) G\t e 1 ~
N = Nkt1 =54<ﬁ> () 2$+E(£k+l) d

Ly
= (bey1)* [54(%>4+§ )~ + %j|
= (gs1) "¢ [54(ek)2—¥/2<1 + %)M + 3]. (E.38)
A 2
Therefore, if the initial scale £, satisfies
5400)> 52 (1 + 265 HHE < 12, (F.39)

then we have ;1 < (£441)~¢. Actually this inequality holds for a large £, because of the
assumption, £ > 4.
Next we define y; inductively according to (6.7) as

Yirr = V(1 — 48 /b y1) — die (F.40)

with

_ log(@KIED | (s +7)loglis

d
k £ Lyt

(F41)
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One can easily find
45/( 46/(_1 4€ 4£0
=(1- 1— 1= 1—
! ( €k+1>< £k> < Z2)( 4 )y
40 40 44, _
B (S
Lt Lii 12
4¢ 40, _ 4¢
() ) e
Ek+l Ek EZ

k

- Vol_[(l _ ;ﬁ) ~Y 4, (F42)

j=0 J+ Jj=0
Note that
6= o) = (G == (), (F43)
and one has
b L exp|:——(3 /2)* log eo} (F44)
Ek-H ‘61/2

Using this inequality, the product in the right-hand side of (F.42) can be evaluated as

k k

40 1 .
1‘1(1 - ﬂ_,) zgll —4exp[—5<3/2>flogz0“. (F.45)

j=0 Jj+1

This right-hand side is uniformly bounded from below by some positive constant if £, > 16.
The sum of d; in the right-hand side of (F.42) can also be evaluated as

k k
> d; <log(coK3|E)) Y expl—(3/2)! log o]
j=0 Jj=0
k
+ (25 +7)logty 2(3/2)”' exp[—(3/2)/ ! log £]. (F.46)

Jj=0

This right-hand side becomes small for B large enough because of K3 = O(B) or O(1),
|E| = O(B) and £y, = O(B'/?). As a result, y; is uniformly bounded from below by some
positive constant Y. 0

Appendix G: Proof of Lemma 9.2

The difference between (9.18) and (9.19) is estimated by

(Z MDD IS ZZItuvtthwullsuku|> (G.1)

acApue(Ze2)*\ A} VW acZ2\AgueA] VW

In the same way as in the proof of Theorem 8.5, it is sufficient to show E[AI] — O as
£ — o0.
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To begin with, we note that

| Tt xe (W) Pexe (V) P xe (W) Pexe ()]
< V/Tr xe (W) Pexe (V) Pexe (V) PrXe W)/ Tr X () Pr e (W) Prxe (W) Pr e (w)
< 11 @) Pexe (W1 xe (W) Pexe (W) [/ T 1 (V) Pexe (V) /T 3o (W) Pexe (W)
< Const x || e (W) Pexe (W11l xe (W) Pex. (W), (G.2)

where we have used (8.27). Further, Schwarz’s inequality yields

E[]l xe (@) Pexe () 1] x: () P xe (W]
< E[l e () Pexe (W 12172E[ ] x: () P xe (W) 17172
< E[l (@) Prx. (V) [1"*E[ ]| xe () Prx (W) |12, (G.3)

where we have used || x.(u)Ppx.(v)|| <1 for any u, v. From these observations and the
decay bound (7.17) for the Fermi sea projection, it is sufficient to estimate

%(Z X2t ZZItu,vtv,wtw,uIe‘”‘“‘v'/ze‘“'“‘W'/z). (G.4)
€

acApue(Z2)*\A} VW acZl\AgueAj V.W

Consider first the case with [u — a| < g,£% with § € (0, 1). Using the bound,

93 jlu—v|ju—w]|

ustywhwal < =, G5)
|u—al
which is derived from (9.5), we have
Z [fu vty whwu|e HU W 2e=#V=W/2 - Congt x ———. (G.6)
VIV, , |ll . a|2
v, W
Therefore the corresponding error is estimated by
(X X
2 |u — al?
acAgue(Z2)*\A}:  acZl\AyueA}:
lu—al<e; €4 lu—al<e; £
Const x £ - £3(Const + Const x log ¢
< ( = 28 (G.7)

This vanishes as £ — oo.

When |u — a| > &£%, we further decompose it into two cases: (i) both v and w fall into
inside the ball with radius |[u — a| around u, i.e., [v—u| <|u—a| and |[w—u| < |u—a|,
(ii) one of v or w falls into outside the ball, i.e., [v—u| > |[u —a| or [w —u| > |u — a|. The
latter contribution is exponentially small in £°. Actually, one has

§ : |tu,vtv,wlw,u|efmu7v\/267mufw\/2

v, wsatisfy (ii)

523[ Y o+ Y e—MIU—VI/Ze—MIU—W\/Z]

vi[v—u|>|u—-al, w:w—u|>|u-al,
w v
— ’ —
< Const x ¢ #'u—al (G.8)
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with a positive constant ',
Finally, consider the former case (i). To begin with, we note that

tuvltywhwu = 2i{sin Z(u, a, v) + sin Z(v, a, w) + sin Z(w, a, w)}. (G.9)

We write « = Z(u,a,v), B = Z(v,a,w) and y = Z(w, a,u) for short. In this case, one
notices that «, f € (—m /2, w/2) and @ + B + y = 0. From these, one has

|sina + sin 8 +siny| < 2<|sinoz|sin2 g + | sin B| sin? %)

< 2(|sina|sin’® B + | sin 8| sin® &)

< s(u—vllw—uf’ +|v—uflw—u)), (G.10)
lu—al
where we have used

. v—u . w—u
|sino| < | | and |[sing| < | | (G.11)

|lu—al |lu—al

for getting the third inequality. From these observations, we obtain
D Ity whyule V2T 2 < Const x (G.12)

lu—al®

V,.W
The corresponding contribution is estimated by
1 1 Const
I GED I S ©13

acAgue(Z2)*\A}:  acZl\AyueA}:

lu—a|>g£8 lu—a|>g£8

This vanishes as £ — o0.

Appendix H: Proof of Lemma 9.7

In order to prove Lemma 9.7, we introduce a partition { X;f (w)}, of unity and prepare
Lemma H.1 below. Here X;f (u) are C? positive functions with a compact support such that
Do x;f (u) = 1. Let x,(u) denote the characteristic function of the support of X;f (u).

Lemma H.1 The following bound is valid:

I(ps + eAs) xp W R(2) xe (V)| < [Const + 2m.|z])*1 % @) R (@) x: (V)|

+ V2mllx; WR @) xW'2, (H.1)

where the positive constant depends only on the strengths of the potentials, Vy, V,, and on
the cutoff functions X[f (u).
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Proof Let ¢ be a vector on R2. Then one has

(@, X: MR* @) x) @) (ps + €A)* x) @ R(@) x: (V)@)
<2m,(|Volloo + I Valloo) Il X2 @) R(2) xe W ||
+ 2m (¢, X (VYR*(2) x (W) Hy xp (W) R(2) X (V) @) (H2)

by using the inequality (ps + eA,)?/(2m.) < H, + || Volloo + | Volloo. Further, the second
term in the right-hand side is evaluated as

2m, (@, x: (VYR*(2)x (W) Hy x (W) R(2) X (V)g)
<2m|zlllxf W R(@) x: Mol
+2h ) 185 x0 WIR@) XMl X, (W (ps + eA)R@) x (Mg

+ 121 x5 WR @) x: M@ ITA X, WIR (@) xe Wl
+ 2me |l s W R (2) xe M@l s W) xe (W | (H.3)

by using

2

Sy _ﬂ S (ery . _ h s 8
H, x, (w) = Vx, (@) - (p+eA) Ay, (W) + x, (W) H,. (H.4)

m, 2m,

Combing these two bounds, we obtain
I(ps +eAp) x) WR@) x:(W)|*

< [2me(||vo||oo 1 Volloo + 12D +21 > 18, x5 )12, + hznAx,f(u)noo}

s=Xx,y

X | X R (@) ()1
+20 ) 195X W oo | oW R@) X W (ps + €A X @WR@) x: (W) |

S=x,y

+2me [l 2 (@ R(2) xe M@ 1 x5 (@) xe (W - (H.5)

Solving this quadratic inequality and using the inequality v/a + b < /a + +/b for a, b > 0,
the desired bound is obtained. O

Proof of Lemma 9.7 Note that

E[|Z(Pr; 2, Lp) — Z(Pr a; £2)|1 = E[Z(Pr; $2, £p) — Z(Pr 4; £2, £p) [L(M 4)]
+E[Z(Pr; 2, 8p) — Z(Pr a; 2, Lp) L(M3)],  (H.6)
where M, is the event which was introduced in the proof of Lemma 8.1, and I(A) is the
indicator function of an event A. The second term in the right-hand side is vanishing in the

limit L 1 oo as
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E[|Z(Pr; 2, p) — T(Pr a3 $2)[LI(M4)]
<E[|Z(Pg; 2, Lp) — Z(Pr a; 2)1*1'*E[I(M)]"?

< Const x L~2E+2-31/6 (H.7)

where we have used Schwarz’s inequality for getting the first inequality, and we have used'?
Lemma 8.4 and Prob(M¢) < Const x L~2<¢+2=31/3 for the second inequality.
In order to estimate the first term in the right-hand side of (H.6), we first note that

Tr x@ Pl Pr, x1, [Pr, yllxe = Tr xo (Prx Pry Pr — Pry Prx Pr) Xq- (H.8)
We want to rewrite this right-hand side. We have

Tr X0 Pex Pey Pexo = Tr xo Pex (x5 + 1 — XD Pey (X + 1 — x5) Pexe
= Tr o Pex x’, Pey X Prxq + corrections. (H.9)

The contributions from the corrections decay exponentially in the distance between §2 and
the support of 1 — x4 by the bound (7.17) for the Fermi sea projection Pr. The rest is written

1
Trxe P Peyx Pexe = 5 / 2Tt xo R@x X, Peyx Prxe. (H.10)

Note that one has

Xx2R(@) = xaX\R@) = xe Ra(@ x5 + xa Ra(@QW (XS R(2) (H.11)

from the geometric resolvent equation, x%R(z) = Ra(z)x% + Ra(2)W (x})R(z), where
W(Xi) = W(Xf‘) + (leyA — Vw)xf‘, and Vw,A is the slightly modified potential near the
boundary of A. (The precise definition of V,, 4 is given in Sect. 2.) The contribution from
the second term in the right-hand side of (H.11) is

1 -
3 / dzTr xo Ra()W (X)) R(@)x X Pry X Prxa- (H.12)
The integrand is estimated by

> D T i @RADW (X R@x x5 X6 (V) Pexs(W)yxy Pexsw)]. (H.13)
wsp (WN2#EP v,.W

For any bounded operators A, B,

| Tr A (V) Prxp (W) B| < /Tr Ay, (V) Pexp (V) A* - /Tt B* x;,(W) Pr x» (W) B
< Const x [|A[l[|BIl, (H.14)

where we have used the bound (8.27). Using this inequality, one has

|'Tr x5 (W R AW (X ) R@)X X5 16 (V) Pexp (W) x5y Pexp (W)

< Const x [ )»(W R4 @)W (XD R@x x5 x5 1 X6 (W) y Xy Py @) |

12The bound (8.31) of Lemma 8.4 holds also for A = R2.
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< Const x Y L?|| 5@ RA) % @)W (x3) x5 @) RE@) 6 (W) |

o

X || xp (W) Pexp ()], (H.15)

where the sum is over w’ such that supp X;f (u) Nsupp |V x5 | # @. Because of the existence
of the indicator function I(M ,) in (H.6), the first factor in the summand is estimated as

Il (W) R4 (2) X6 (W) [[T(M 4) < Const x L*E=% exp[—puo L] (H.16)

from Lemma 8.1. The second factor can be estimated by using Lemma H.1. Therefore it is
sufficient to estimate the following quantity near the Fermi energy:

E/ dyll X @) R(Er + iy) x6 W x5 (W) Pexp (). (H.17)
y—

Note that

Y+ V+
/ dyll)?b(ll')R(EF+iy)Xb(V)||S/ dy|| %) R(Eg +iy) xp W2 [y1777". (H18)

Y-

Substituting this into the above, we obtain
Y+
E/ dy | xs(@)R(EE +iy) xo V)| x5 (W) Pexp ()|
)’,

Sliminf/ dy|yI"*"EL X ) R(Eg + i) x6 DI 1 (W) Pexp ()]

en—0 In

<liminf / dylyI"* Bl 7 (@) R (B + i) xo ) I'TZE L o (W) Progs (w1712
en— I
< Const x exp[—u|u’ — v|/2] exp[—u|w — u|/2], (H.19)

where we have written I, = [y_, y,]\(—&,, €,), and we have used Fatou’s lemma, Fubini—
Tonelli theorem, Schwarz’s inequality, the bounds (7.1) and (7.17). Thus, the corresponding
contribution is vanishing as L 1 oo.

Consequently, it is enough to consider Tr o Pr. 4x(x5)? Pry x 3 Prxe which comes from
the first term in the right-hand side of (H.11). Using the adjoint of the geometric resolvent
equation, R(z))(i = Xi R,(z) — R(z)W(Xf\)RA (z), we have

Tr o Peax (X5 Pey x5 Pexe = Tt xo Pr ax (x5)* Pey(x5)* Pr,a xo + correction  (H.20)

in the same way. The correction is vanishing as L 1 oo. Using the geometric resolvent equa-
tion again, the first term in the right-hand side is written

Tr X Pr.ax (x5 Pry (X)) Pr.axe
=Trxo Prax x5 Pray(x3)’ Praxe

1 -
+5— / dzTr xo Pe ax XS RA@QW D R@Y(X)* Praxe.  (H21)
Y
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The integrand in the second term in the right-hand side is written

Tr o Peax XA RAQW (XD R@)y (X5 Praxe
=Trxe PFA,AxXiXA’RA(Z)W(Xi)R(Z)y(Xi)ZPF,AXQ
+Tr xo Prax x5 (1 = xa ) RA@QW(XDR@YXD Praxe,  (H22)

where x4 is the characteristic function of the region A’ which satisfies the conditions
of (8.4). This right-hand side can be shown to be vanishing as L 1 oo in the same way.
Consequently, we obtain

Tr X0 PF,AXX;S‘ PF,Ay(Xf\)3PF,AXS? = TI'XQ PF,AxPF,AyPF,AXQ =+ COITeCtiOIl. (H23)

The first term in the right-hand side is nothing but the desired form. O

Appendix I: The Index Formula for the Switch Functions
The aim of this appendix is to give a proof of the following theorem:

Theorem .1 For a fixed period £ p of the potentials A" and VOLP in the Hamiltonian H?
of (9.13) on the whole plane R?, the following relation is valid almost surely:

Index(PrU, Pr) = 277 Tt Pr[[ Pr, A1al, [Pr, A2.a]], (L1)
where Xja, j = 1,2, are two switch functions given by

1, forx—a; >0;

)Ll,a(r) = {

0, forx—a <0,
(1.2)
L, fory—a,>0;

Aa(r) :=
2a(r) {0, fory—a; <0

with the locations a = (a;, a;) € R? of the steps.

Remark

1. The right-hand side of (I.1) is equal to the form of another Hall conductance which
was discussed in [10, 11]. Elgart and Schlein [7] justified this Hall conductance formula
within the linear response approximation under the assumption that the Fermi energy lies
in a spectral gap. They also proved that the value of (I.1) takes the desired integer under
the same gap assumption. As mentioned above, Germinet, Klein and Schenker proved
the constancy of (I.1) in the localization regime, for a random Landau Hamiltonian with
translation ergodicity, by using a consequence of the multiscale analysis.

2. From Theorem 9.4, we obtain that the Hall conductance using the position operator is
equal to that using the switch functions.
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We write the index as Z;(Pg; €p) = 2mi Tr Pp[[ Pk, A1,al, [ Pr, A2,a]]. First, we shall show
that the index Z; (Pg; £p) is well defined for almost every w. Note that

Tr|[Pr, Aral[ PR, A2.all

< D TrlWIPr AralXe ([ Pr, Aoalxe (W]

mv.we(Z%)*

< Z IA1a(@) — Apa(WI[A22(V) = A2a(W)| Tr [ Xe (W) Pexe (V) Pexe (W), (1.3)

u,v,wE(Zg)*

where x.(u) is the characteristic function of the &, x &, rectangular box s.(u) centered at
u, and we have chosen the set (Zg)* of the centers u of the boxes s, (u) so that a becomes a
vertex of a rectangular box, i.e., a € Zg. Using Schwarz’s inequality, we have
E[Tr | x. () Pex: (V) Pexe (W)]]
< VE[Tr x. () P xe (V) P xe (W]y/E[Tr 3 (W) Prxe (V) Prxe(W)] (L4

and

Tr e (W) P X (V) Pexe (u)
< VT xe (W) Prxe (W) - Tt Xe (W) Prxe (V) Pe X (V) Pexe ()
< Const x || xe (W) Pex: (V)|l, (L5)

where we have used the bound (8.27). From these bounds, we obtain

E[Tr | xe () P xe (V) Prxe (W)]]
< Const x v/E[|| x: (@) P xt: W 1vE[ xe (W) Pex (V)]

< Const x e HU=VI/2g=1Iw=vI/2 1.6)

where we have used the decay bound (7.17) for the Fermi sea projection. Note that

0, for (u; —a;)(v; —a;) > 0;
|Aj,a(u)—xj,a(v)|={ or (uy —apv; = a;) > 17

1, for(uj—aj)(vj—aj)<0,

and

Vixr =i+ 16—y = x = yi1/2+ [x2 — yal/2. (1.8)
Combining these, (I.3) and (1.6), we obtain
E[Tr|[Pr, Ar.al[ Pr, A2.a]]] < Const x Z e~ Mui—al/4 j—plvi—ail/4 ,—pluy —vs /4
u,v,w
x e~ twa—arl/4 ,—plva—al/4 ,—ulwi—vil/4 _ 5o (1.9)

Thus the operator [ Pg, A1 a][ Pr, A2.a] is trace class for almost every w.
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Next we show that the index Z; (Pg; £p) is independent of the locations a;, a, of the steps
of the switch functions 1, ,. Leta’,a e R2. Then we have

Tr Pe[[Pr, A1), [Pr, A2 ]l — Tt Pe[[Pr, A1 al, [ PR, A2.a]]
=Tr Pe[[Pr, (A1,a — A12)]s [Pr, A2
+ Tr Pe[[Pr, A1.al, [Pr, (A2 — A2.0) 1] (1.10)
We will prove that the first term in the right-hand side is vanishing because the second term

can be handled in the same way. We choose ¢ = (g1, €;) so that both of a’ and a satisfy
a,ae Zg (b) := Z? — b with some b € R?. We denote by (Zg(b))* the dual lattice of Zg(b).

Lemma I.2 Foru,ve (Zg(b))*, the following bound is valid.:

E[Tr | x. (W) Prx. (v)|] < Const x ¢4~ (I.11)
with some positive constant |’
Proof Note that

E[Tr |3 (w) Prxs (V)] < Z E[Tr |3 (w) Pr xe (W) Xe (W) Prxe (V)]
we(Z2(b))*

< Y VEITr xe (W Prxe (W) P (w)]

we(ZZ(b))*

% v/EITt o (V) P xe (W) Pe X (V)] 1.12)

Further, we have

Tr . (W) P X (W) Prxe ()
< VT xe (W) Pr xe (W) y/Tr xe (W) Pr e (W) Pr e (W) Pexe (W)
< Const X || x. (W) Pgx: (W), (1.13)

where we have used the bound (8.27). Combining this, the decay bound (7.17) for the Fermi
sea projection, (I.12), we obtain

E[Tr | x. () Pex.(v)[]

< Const x Z e W2 =W VI2 < Congt x ¢ 14 1.14)
we (ZE (b))* O

Now let us consider the first term in the right-hand side of (I1.10). We write AX for Aj y —
A1.a for short.

Lemma 1.3 We have

E[Tr|AAM[ P, Aow]ll <00 and E[Tr|AAPs[ Py, ha]l] < 00. (115)
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Proof Without loss of generality, we can assume a; > a;. Then we obtain

E[Tr|AAMPr. dowlll < D E[Tr|AAx. ([ Pr. Ao 1x:(M)]]
u,ve(ZZ(b))*

< D @ = ke @A (V) = 2o (W)
u,ve(ZZ(b))*
x E[Tr | () Pexe (V)]

—_n' _ —_! —a —_n' —na'
= Y Y el i el o,

ayp<u <ai,u2 v, 2

where we have used (1.7), (I.8) and Lemma 1.2.
Similarly, we have

E[Tr [ALPe[Pr, Aow 1] < Z E[Tr | AXx: () Pexe (V[ Pe, Ao 1xe (W]

uwv,w

<D P (W) = Ap (W[ (W) = Ao (V)]

uwv,w

% EITr | x: () Prx, (V) Pege (W)]]
< Constx Y [ha (W) = Apa(W)][A2a (W) — Aow (V)]

wv,w

x @ MuU=VI/2 p—plw=vl/2

< Const x § e Hlur—vil/4 ,—plvr—wy /4

ay<uy<ajp,vy,wi

_ o o a4 _ —a
x Y et vl o,

u,v2,wp

where we have used the bound (I1.6).

Relying on this Lemma 1.3, we have
Tr Pe[[Pr, AA], [Pr, A2
=Tr PrRAA(1 — Pp)[Pr, Ap.ar] + Tr[ Pr, A2.21(1 — Pp) AL Pr.
Further, the first term in the right-hand side is written
Tr PEAA(1 — Pe)[Pr, Aoa']
=TrAA(1 — Pe)[Pr, Ao 1P =Tr ALl — Pp)[ P, X221,
where we have used (1 — Pg)[ Pg, A2 1(1 — Pg) = 0. The second term becomes
Tr[Pe, Ao,a ](1 — Pp) AL Pg = Tr[Pe, A2,a 1(1 — PE) Xsupp ar AL PR
= Tr AAPe[ P, A2.2]1(1 — Pr) Xsupp as.
= Tr AAPg[ P, A2 2 1(1 — PF)
= Tr AAPp[Pr, A2o],

(I.16)

1.17)

O

(1.18)

(1.19)

(1.20)
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where Xsuppas 18 the characteristic function of the support of AX, and we have used
Pr[ P, Ay.o]Pr = 0. As a result, we obtain

Tr Pe[[ Pr, AAL, [P, Aoa 11 =Tr AA[ P, Ao '] (1.21)
This right-hand side is decomposed into two parts as
Tr AA P, A0 ] =Tr Ak e[ Pr, Az o] + Tr AA(L = Xo)[Pr, Aoa ] (1.22)

with the characteristic function y, of the square box centered at r = 0 with a sufficiently
large sidelength £. Since we have

E[Tr |, Pell < ) EITr|x Pex: (v)[] < 00 (1.23)

from Lemma 1.2, the first term in the right-hand side is vanishing by cyclicity of the trace.
The second term can be evaluated in the same way as in the proof of Lemma [.3. In con-
sequence, it vanishes as £ 1 co. Thus we obtain Tr Pg[[ Pp, AA], [Pg, A2.2]] = 0. Since the
second term in the right-hand side of (I.10) can be handled in the same way, the index
Zs(Pg; £p) is independent of the locations a;, a, of the steps of the switch functions.

Using this property, the index is written

LR ) =0 Y Y Dl W) — Du(v.wws IS v, w0 (124
¢ A€ A u,v,we(Z2)*
with
Dip(¥, W, 05 2) = [1.a(¥) = A1a (W22 (W) = Az 0 (W] -
and
Dy (V. W, 05 2) 1= [2.a(¥) — AW (W) — A a@], @26)

where both A, and V, are the same as in (9.18), and S(u, v, w, u) is given by (9.20). We
also write

\
T 2.0 =353 30 21Dl w.usa) = Dy, w.u;a)]

ue Ay v,we(Z2)* acZ2

X S(u,v,w,u), (1.27)
where A} is given by (9.21).
Lemma 1.4 The following holds: E[|Z;(Pr; £p) — Z; (Pr; £2,£p)|1 = 0 as |$2| 1 oo.
Proof To begin with, we note that

|E[Tr %o (w) P xe (V) Pe X (W) Prxe (W)]] < E[Tr [ . (V) Prxe (W) Prxe (w)]]

< Const x e HV~WI/2g=niw—ul/2 (1.28)
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which is derived from (I.6). Using this, (I.7) and (I.8), we have

E[|Z;(Pr; €p) — I3 (Pr; £2, £p)]

Const Z Z Z Z Ze_mul —ayl/4 p—plwi—ay|/4 ,—plwi—uy|/4

acZZ\AgueA]  A€Apue(ZH*\ A} Vi-wi

X § e Hlva—w2l/4 ,—plwa—az|/4 ,—pluz —az|/4

v2,w2

Const Z Z Z Z e~ Wlui—ail p=pluz—a|/4 (1.29)

acZ2\AgueA]  a€Ague(Z2)*\A}

with a positive constant . This right-hand side is easily shown to vanish as £ 1 co. O

Using the identity, Zaezg[Dlz(V» w,u;a) — Dy (v,w,u;a)] = —(V—w) X (W—u), one
has )

IS (Pe; 2, €p) = —7 Z D (v —w) x (W —u) Tr xe (W) P (V) P e (W) P (W)

ueAy v.w

=1ZI°(Pp; 2,Lp), (L.30)

where we have used the expression (9.23) of Z°(Pg; §2,£p) and (9.24). Combining this,
(9.28) and Lemma 1.4, we obtain Theorem I.1.
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