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Abstract We study the charge transport of the noninteracting electron gas in a two-
dimensional quantum Hall system with Anderson-type impurities at zero temperature. We
prove that there exist localized states of the bulk order in the disordered-broadened Landau
bands whose energies are smaller than a certain value determined by the strength of the uni-
form magnetic field. We also prove that, when the Fermi level lies in the localization regime,
the Hall conductance is quantized to the desired integer and shows the plateau of the bulk
order for varying the filling factor of the electrons rather than the Fermi level.

Keywords Quantum Hall effect · Landau Hamiltonian · Strong magnetic field · Anderson
localization · Hall conductance plateaus

1 Introduction

The two most remarkable facts of the integral quantum Hall effect [1] are the integrality
of the Hall conductance and its robustness for varying the parameters such as the filling
factor of the electrons and the strength of the disorder. The integrality is explained by the
topological nature [2, 3] of the Hall conductance. The constancy of the Hall conductance is
due to the Anderson localization of the wavefunctions of the electrons [4].

First of all we shall survey recent mathematical analysis of the quantum Hall effect. As
for justification of the conductance formula leading to the topological invariant, satisfactory
results have been obtained in the recent papers within the linear response approximation
or an adiabatic limit of slowly applying an electric field [5–9]. Avron, Seiler and Yaffe [5]
proved that a flux averaged charge transport1 is quantized to an integer in the adiabatic limit
under the assumption of a nonvanishing spectral gap above a non-degenerate ground state

1This is a non-trivial charge transport which is intrinsically different from the response to a static external
field.
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for a finite-volume interacting electron gas. In [6], a static electric field with a regularized
boundary condition was used as an external force to derive an electric current for a finite-
volume interacting electron gas under the assumption of a nonvanishing spectral gap above
the sector of the ground state(s). The resulting Hall conductance is equal to the universal
conductance multiplied by the filling factor of the electrons in the infinite-volume limit.
When the Fermi level lies in a spectral gap for a noninteracting electron gas on the whole
plane R2, Elgart and Schlein [7] justified the Hall conductance formula which is written in
terms of switch functions in the adiabatic limit. This formula was first introduced by Avron,
Seiler and Simon [10, 11]. Without relying on the gap assumption, a general conductance
formula was obtained for finite-volume interacting electron gases [8]. For the whole plane,
Bouclet, Germinet, Klein and Schenker [9] obtained a Hall conductance formula for a ran-
dom noninteracting electron gas with translation ergodicity under the assumption that the
Fermi level falls into a localization regime.

As to the localization and the related conductance plateaus, we refer only to a class of
noninteracting electron gases because the localization of interacting electrons is still an un-
solved problem. The existence of the localization at the edges of the disordered-broadened
Landau bands was proved within a single-band approximation [12–14], for a sufficiently
strong magnetic field [15–17], or for a low density of the electrons at the band edges [18].
The existence of the quantized Hall conductance plateaus was first proved by Kunz [19]
under assumptions on a linear response formula of the conductance and on the band edge
localization. The latter assumption on the localization can be removed for a tight-binding
model. Namely, the constancy of the quantized Hall conductance was proved within the
tight-binding approximation for varying the Fermi level [20, 21], or the strength of the po-
tential [22]. We should remark that, without relying on the translation ergodicity of the
Hamiltonian, Elgart, Graf and Schenker [23] proved the constancy of the quantized Hall
conductance for a tight-binding case. For continuous models, Nakamura and Bellissard [24]
proved that the states at the bottom of the spectrum do not contribute to the Hall conduc-
tance. Quite recently, Germinet, Klein and Schenker [25] proved that the Hall conductance
formula [10, 11] which is written in terms of switch functions shows a plateau for a ran-
dom Landau Hamiltonian with translation ergodicity. In order to determine the integer of
the quantized value of the Hall conductance, they further required the condition that the
disordered-broadened Landau bands are disjoint, i.e., there exists a nonvanishing spectral
gap between two neighboring Landau bands. However, the existence of the localized states at
the band edges does not necessarily implies the appearance of the Hall conductance plateaus
for varying the filling factor of the electrons because the density of the localized states may
be vanishing in the infinite volume. In order to show the existence of such plateaus, we need
to prove the existence of localized states of the bulk order. In passing, we remark that Wang
[26] obtained the asymptotic expansion for the density of states in the large magnetic field
limit.2

In this paper, we focus on the issue of proving the bulk order plateaus, and consider a non-
interacting electron gas with Anderson-type impurities in a magnetic field in two dimensions
at zero temperature. The centers of the bumps of the impurities form the triangular lattice.
First we prove that there exist localized states of the bulk order in the disordered-broadened

2In general, an asymptotic series does not give us any information for a fixed finite value of the parameter
because the asymptotic series is not necessarily convergent. See, for example, Sect. XII.3 of the book [27].
Thus the result of [26] dose not imply the existence of localized states of the bulk order for a fixed finite
value of the magnetic field. See also the recent paper [28] for the difficulty of obtaining a lower bound for the
density of states.
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Landau bands whose energies are smaller than a certain value determined by the strength of
the magnetic field. In order to obtain the Hall conductance as a linear response coefficient
to an external electric field, we apply a time-dependent vector potential Aex(t) = (0, α(t)),
where the function α(t) of time t is given by (2.18) in the next section. For t ∈ [−T ,0] with
a large positive T , the corresponding electric field is adiabatically switched on, and for t ≥ 0,
the electric field becomes (0,F ) with the constant strength F . First we consider the finite,
isolated system of an Lx × Ly rectangular box, and impose periodic boundary conditions
for the wavefunctions with the help of the magnetic translation (2.17), and then we take the
infinite-volume limit. The explicit expression of the conductance formula which we will use
is given in Ref. [8]. We should remark that, when the system is translationally invariant,
the constant Hall current flows on the torus without dissipation of energy as in Ref. [8].
We prove that, when the Fermi level lies in the localization regime, the Hall conductance
is quantized to the desired integer and shows the plateau of the bulk order for varying the
filling factor of the electrons. In our approach, we require neither the disjoint condition for
the Landau bands nor the translation ergodicity3 of the Hamiltonian which were assumed in
[25] as mentioned above. Instead of these condition, we need the “covering condition” that
the whole plane R2 is covered by the supports of the bumps of the impurity potentials so that
the sum of the bumps is strictly positive on the whole plane R2. This “covering condition”
is not required in [25].

The present paper is organized as follows. In Sect. 2, we describe the model, and state
our main theorems. As preliminaries, we study the spectrum of the Hamiltonian without the
random potential in Sect. 3 and the site percolation on the triangular lattice of the impurities
in Sect. 4. In Sect. 5, we obtain a decay bound for the resolvent (Green function) of a fi-
nite volume. This bound becomes the initial data for the multi-scale analysis [29–31] which
is given in Sect. 6. In order to prove constancy of the Hall conductance, we further need
the fractional moment bound [32] for the resolvent. The bound is given in Sect. 7. As pre-
liminaries for proving the integrality and constancy of the Hall conductance, we study the
finite volume Hall conductance in Sect. 8. The integrality of the Hall conductance is proved
within the framework of “noncommutative geometry” [10, 11, 20, 21] in Sect. 9, and the
constancy is proved by using the homotopy argument [20, 22] in Sect. 10. The widths of the
Hall conductance plateaus and the corrections to the linear response formula are estimated
in Sects. 11 and 12, respectively. Appendices A–H are devoted to technical estimates. The
standard Hall conductance formula which is given in Sect. 9 is written in terms of the po-
sition operator of the electron. In Appendix I, we give a proof that this Hall conductance is
equal to another Hall conductance [10, 11] which is written in terms of switch functions for
a class of continuous models.

2 Model and the Main Results

Consider a two-dimensional electron system with Anderson-type impurities in a uniform
magnetic field (0,0,B) perpendicular to the x–y plane in which the electron is confined.
For simplicity we assume that the electron does not have the spin degrees of freedom. The
Hamiltonian is given by

Hω =H0 + Vω (2.1)

3In a generic, realistic situation that there exist one- or two-dimensional objects such as dislocations in crys-
tals and interfaces in semiconductors, we cannot expect that the system has translation ergodicity.
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with the unperturbed Hamiltonian,

H0 = 1

2me

(p + eA)2 + V0, (2.2)

and with a random potential Vω , where p := −i�∇ with the Planck constant �, and −e

and me are, respectively, the charge of electron and the mass of electron; A and V0 are,
respectively, a vector potential and an electrostatic potential. The system is defined on a
rectangular box

Λsys := [−Lx/2,Lx/2] × [−Ly/2,Ly/2] ⊂ R2 (2.3)

with the periodic boundary conditions. The vector potential A = (Ax,Ay) consists of two
parts as A = AP + A0, where A0(r)= (−By,0) which gives the uniform magnetic field and
the vector potential AP satisfies the periodic boundary condition,

AP(x +Lx, y)= AP(x, y +Ly)= AP(x, y). (2.4)

This condition for AP implies that the corresponding magnetic flux piercing the rectangular
box Λsys is vanishing. Therefore the total magnetic flux is given by BLxLy from the vector
potential A0 only. We assume that the components of the vector potential AP are continu-
ously differentiable on R2. Further we assume that the electrostatic potential V0 satisfies the
periodic boundary condition,

V0(x +Lx, y)= V0(x, y +Ly)= V0(x, y), (2.5)

and ‖V +
0 ‖∞ + ‖V −

0 ‖∞ ≤ v0 < ∞ with some positive constant v0 which is independent of
the system sizes Lx,Ly . Here V ±

0 = max{±V0,0}. As a random potential Vω , we consider
an Anderson-type impurity potential,

Vω(r)=
∑

z∈L2

λz(ω)u(r − z), (2.6)

for r := (x, y) ∈ R2. The constants {λz(ω) | z ∈ L2} form a family of independent, identi-
cally distributed random variables on the two-dimensional triangular lattice L2 ⊂ R2 with
the lattice constant a > 0. The common distribution of the random variables has a density
g ≥ 0 which has compact support, i.e., suppg ⊂ [λmin, λmax] with λmin < 0 < λmax. Further
the density g satisfies the following conditions:

g ∈ L∞(R)∩C(R) and
∫ λ+

−λ−
g(λ)dλ > 1/2 (2.7)

with two positive numbers λ+ and λ−. We consider two cases: (i) a small λ− and (ii) a small
λ+. We assume that the condition (2.7) holds for both of the two cases. If the density g is an
even function of λ and is concentrated near λ= 0, this requirement holds. We take

L2 = {z =ma1 + na2 | (m,n) ∈ Z2} (2.8)

with the two primitive translation vectors, a1 = (a,0) and a2 = (a/2,
√

3a/2). The triangu-
lar lattice is embedded in R2 such that each face is an equilateral triangle as described in
Fig. 1. We also consider its dual, hexagonal lattice which is defined as follows. Choose a
vertex of the dual lattice at the center of gravity of each triangle, i.e., the intersection of the
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Fig. 1 The parallelogram in the
triangular lattice with its dual,
hexagonal lattice

bisectors of the sides of the triangle. For the edges of the dual lattice, take the line segments
along these same bisectors, and connecting the centers of gravity of adjacent triangles.

We assume that the bump u of the single-site potential in (2.6) satisfies the following
conditions: 0 ≤ u ∈ L∞(R2),

u(r)= 0 for |r| ≥ ru with a constant ru ∈ (
√

3a/3,
√

3a/2), (2.9)

and

u(r)≥ u0 > 0 for r in the face of the hexagon

with the center r = 0 of gravity. (2.10)

Here u0 is a positive constant. The first condition (2.9) implies that the single-site potentials
u has compact support, and overlap with only nearest neighbor u. The next condition (2.10)
implies that the whole space R2 is covered by the supports of the bumps {u(· − z)}z∈L2 of
the impurities so that

∑

z∈L2

u(r − z)≥ u0 for any r ∈ R2. (2.11)

We should remark that this “covering condition” is needed for estimating the number of
the localized states and for applying the fractional moment method [32], which yields a
decaying bound for the resolvent.

Clearly the random potential Vω of (2.6) does not necessarily satisfy the periodic bound-
ary condition,

Vω(x +Lx, y)= Vω(x, y +Ly)= Vω(x, y), (2.12)

without a special relation between the lattice constant a and the system sizes Lx,Ly . There-
fore we will replace the random potential Vω with Ṽω which is slightly different from Vω in a
neighborhood of the boundaries so that Ṽω satisfies the periodic boundary condition (2.12).
Before proceeding further, we check that the boundary effect due to this procedure is almost
negligible and does not affect the following argument. Write

LP
x/2 =Nxa and LP

y/2 =Ny · √3a/2 with positive integers Nx,Ny. (2.13)

When we take the sizes to be Lx = LP
x and Ly = LP

y , the periodic boundary condition is
automatically satisfied without replacing the random potential. However, for a given lattice
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constant a, the sizes do not necessarily satisfy the flux quantization condition, LP
xL

P
y =

2πM�2
B , which we need in the following argument. Here M is a positive integer, and �B is

the so-called magnetic length defined as �B := √
�/(eB). In a generic situation, we have

2πM�2
B < LP

xL
P
y < 2π(M + 1)�2

B with some positive integer M. (2.14)

In order to recover the flux quantization condition, we change the size a little bit in the y

direction. Namely we choose the sizes as Lx = LP
x and Ly = LP

y − δLy with a small δLy .
Substituting this into LxLy = 2πM�2

B , we have

0 < δLy < 2π�2
B/Lx. (2.15)

Notice Ly < LP
y , and consider the triangles which overlap with the upper boundary of Λsys.

We replace these equilateral triangles with the isosceles triangles of the height (
√

3a/2 −
δLy). From the above bound (2.15) for δLy , the height of the isosceles triangles is slightly
shorter than the height

√
3a/2 of the equilateral triangles for a sufficiently large Lx . In

the same way as in (2.6), we put the impurity potentials on the center of the gravity of
the isosceles triangles. Because of the bound (2.15) for δLy , the effect of this procedure is
negligibly small for a sufficiently large size Lx . When the boundary effect plays an essential
role as in Sect. 9 below, we denote by Ṽω,Λ this resulting random potential for a region Λ.
Otherwise, we will often use the same notation Vω for short.

When AP = 0, we require the differentiability, V = V0 +Vω ∈ C2, in addition to the above
conditions, in order to obtain the exponential decay bound for the resolvent (Hω − z)−1 in
Appendix D.2.

As mentioned above, we require the flux quantization condition, LxLy = 2πM�2
B , with

a sufficiently large positive integer M . The number M is exactly equal to the number of
the states in a single Landau level of the single-electron Hamiltonian in the simple uniform
magnetic field with no electrostatic potential. This condition LxLy = 2πM�2

B for the sizes
Lx,Ly is convenient for imposing the following periodic boundary conditions: For an elec-
tron wavefunction ϕ, we impose periodic boundary conditions,

t (x)(Lx)ϕ(r)= ϕ(r) and t (y)(Ly)ϕ(r)= ϕ(r), (2.16)

where t (x)(· · ·) and t (y)(· · ·) are magnetic translation operators [33, 34] defined as

t (x)(x ′)f (x, y)= f (x − x ′, y),

t (y)(y ′)f (x, y)= exp[iy ′x/�2
B]f (x, y − y ′)

(2.17)

for a function f on R2.
In order to measure the conductance, we introduce the time-dependent vector field

Aex(t)= (0, α(t)) with

α(t)= −F t ×
{
eηt , t ≤ 0;
1, t > 0.

(2.18)

Here F is the strength of the electric field, and η > 0 is a small adiabatic parameter. The
y-component of the corresponding external electric field is given by

Eex,y(t)= − ∂

∂t
α(t)=

{
F(1 + ηt)eηt , t ≤ 0;
F, t > 0.

(2.19)
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The time-dependent Hamiltonian is given by

Hω(t)= 1

2me

[p + eA + eAex(t)]2 + V0 + Vω. (2.20)

The velocity operator is

v(t)= (vx(t), vy(t))= 1

me

[p + eA + eAex(t)]. (2.21)

Let U(t, t0) be the time evolution operator. We choose the initial time t = t0 = −T with a
large T > 0. Then the total current density is given by

jtot(t)= (jtot,x(t), jtot,y(t))= − e

LxLy

TrU †(t, t0)v(t)U(t, t0)PF for t ≥ 0, (2.22)

where PF is the projection on energies smaller than the Fermi energy EF. This total current
density is decomposed into [8] the initial current density j0 and the induced current density
jind(t) as jtot(t)= j0 + jind(t). Here the initial current density j0 is given by

j0 = − e

LxLy

Tr
1

me

[p + eA]PF. (2.23)

Further the induced current density jind(t) is decomposed into the linear part and the nonlin-
ear part in the strength F as

jind(t)= (σtot,xy(t), σtot,yy(t))F + j′ind(t) with j′ind(t)= o(F ), (2.24)

where the coefficients, σtot,sy(t) for s = x, y, of the linear term are the total conductance
which are written

σtot,sy(t)= σsy + δσsy(t) (2.25)

with the small corrections, δσsy(t), due to the initial adiabatic process, and o(F ) denotes a
quantity q satisfying q/F → 0 as F → 0. Since the present system has no electron-electron
interaction, the order estimate for the nonlinear part j′ind(t) in (2.24) holds also in the infinite
volume limit [8, 9, 35] with the same form of the linear part of the induced current. But
the nonlinear part j′ind(t) depends on the adiabatic parameters η and T . Therefore we cannot
take the adiabatic limit T ↑ ∞ and η ↓ 0 for the nonlinear part j′ind(t) of the induced current.

Now we describe our main theorems. Let ν =N/M be the filling factor of the electrons
for a finite volume, where N is the number of the electrons, and write ωc = eB/me for the
cyclotron frequency. Consider first the case with AP = 0 in the infinite volume limit.

Theorem 2.1 Assume that the filling factor ν satisfies n − 1 < ν ≤ n with a positive in-
teger n. Then there exist positive constants, B0(n) and v0, such that there appear local-
ized states of the bulk order around the energy En−1 = (n− 1/2)�ωc , i.e., the n-th Landau
band center, for any magnetic field B > B0(n) and for any potential V0 ∈ C2 satisfying
‖V +

0 ‖∞ + ‖V −
0 ‖∞ ≤ v0. Further, when the Fermi level lies in the localization regime, the

conductances are quantized as

σxy = −e2

h
×

{
n for the upper localization regime,

(n− 1) for the lower localization regime,
σyy = 0,

(2.26)
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and exhibit the plateaus for varying the filling factor. With probability one, there exist pos-
itive constants, Cj (ω) < ∞, j = 1,2,3, such that the corrections δσsy(t) due to the initial
adiabatic process satisfy

|δσsy(t)| ≤ [C1(ω)+ C2(ω)T ]e−ηT + C3(ω)η
1/13, (2.27)

and that the expectation E[Cj ] of the positive constants Cj (ω) is finite for j = 1,2,3, i.e.,
E[Cj ] <∞. Here the constant Cj (ω) itself without the expectation may depend on the ran-
dom event ω of the random potential Vω .

In the case with AP �= 0 in the infinite volume limit, we require a strong disorder be-
cause of a technical reason. (See Appendix D for details.) We take u = �ωcû with a fixed,
dimensionless function û for the random potential Vω of (2.6). This potential behaves as
‖u‖∞ ∼ Const.×B for a large B . For this random potential, we have:

Theorem 2.2 Assume that the filling factor ν satisfies n − 1 < ν ≤ n. Then there exist
positive constants, B0(n),α0(n) and w0, such that there appear localized states of the bulk
order around the energy En−1 = (n − 1/2)�ωc for any magnetic field B > B0(n) and for
any vector potential AP satisfying ‖|AP|‖∞ ≤ α0(n)B

1/2 and for the function û satisfying
‖û‖∞ ≤w0. Further, when the Fermi level lies in the localization regime, the conductances,
σxy and σyy , are quantized as in (2.26) and exhibit the plateaus for varying the filling factor.
With probability one, the corrections δσsy(t) due to the initial adiabatic process satisfy a
bound having the same form as that of the bound (2.27).

Remark

1. In the conditions in the first theorem, we can also take u= �ωcû for the random potential
with a small norm ‖û‖∞.

2. In the conditions in the second theorem, we can take V0 which behaves as ‖V0‖∞ ∼
Const ×B for a large B with a small positive constant, instead of a fixed potential V0.

3. These two theorems do not necessarily state that both of the upper and lower band edges
exhibit the localized states of the bulk order. Namely a localization region of the bulk
order may appears only at one side for a single Landau band.

4. We do not require the assumption that the n-th Landau band is separated from the rest of
the spectrum by two spectral gaps.

5. In the previous analyses [15–17, 25], they considered the Hamiltonian having the form
with AP = 0 and V0 = 0. The analyses rely on the special properties of the unperturbed
Hamiltonian. For example, they use the explicit forms of the integral kernel of the pro-
jections onto the Landau levels. The extension to the case with AP �= 0 and V0 �= 0 needs
additional, non-trivial analyses for localization. In addition, we do not require a period-
icity of the potentials AP,V0 with a finite period. Therefore the Hamiltonian Hω does not
need to be translation ergodic.

6. The widths of the plateaus can be estimated as we will show in Sect. 11 below. In partic-
ular, when AP = 0 and V0 = 0, the ratio of the localized states to the total number M of
the states in the single Landau level tends to one as the strength B of the magnetic field
goes to infinity. This implies that our estimate for the widths of the plateaus shows the
optimal, expected value in this limit.
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3 Spectral Gaps of the Hamiltonian H0

In order to show the localization for the disordered-broadened Landau bands, we first need
to check the condition for the appearance of the spectral gaps in the spectrum of the Hamil-
tonian H0 of (2.2) with a generic, bounded potential V0.

First we recall the simplest Landau Hamiltonian for a single electron only in the uniform
magnetic field. The Hamiltonian is given by

HL = 1

2me

(p + eA0)
2. (3.1)

We assume that the electron is confined to the same finite rectangular box Λsys of (2.3) as the
box for the Hamiltonian Hω of (2.1), and impose the periodic boundary conditions (2.16) for
the wavefunctions with the flux quantization condition LxLy = 2πM�2

B . Then the energy
eigenvalues En of HL are given by4

En :=
(
n+ 1

2

)
�ωc for n= 0,1,2, . . . . (3.2)

The Hamiltonian H0 of (2.2) on the finite box Λsys is written

H0 = 1

2me

(p + eA0 + eAP)
2 + V0

= HL + e

2me

AP · (p + eA0)+ e

2me

(p + eA0) · AP + e2

2me

|AP|2 + V0. (3.3)

Using the Schwarz inequality, one has

|(ψ,AP · (p + eA0)ψ)| ≤ ‖|AP|‖∞
√
(ψ, (p + eA0)2ψ) (3.4)

for the normalized vector ψ in the domain of the Hamiltonian. From this inequality, the
energy expectation can be evaluated as

(ψ,H0ψ) ≤ (ψ,HLψ)+
√

2e√
me

‖|AP|‖∞
√
(ψ,HLψ)+ e2

2me

‖|AP|‖2
∞ + ‖V +

0 ‖∞ (3.5)

and

(ψ,H0ψ) ≥ (ψ,HLψ)−
√

2e√
me

‖|AP|‖∞
√
(ψ,HLψ)− ‖V −

0 ‖∞, (3.6)

where V ±
0 = max{±V0,0}. Let us denote by Eedge

n,+ and Eedge
n,− , respectively, the upper and

lower edges of the n+ 1-th Landau band which is broadened by the potentials V0 and AP.
From the standard argument about the min-max principle,5 one has

Eedge
n,+ ≤ En +

√
2e√
me

‖|AP|‖∞
√
En + e2

2me

‖|AP|‖2
∞ + ‖V +

0 ‖∞ (3.7)

4See, for example, Refs. [6, 36].
5See, for example, Sect. XIII.1 of the book [27] by M. Reed and B. Simon.
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for n= 0,1,2, . . . . For the lower edge, we assume

e√
2me

‖|AP|‖∞ ≤
√

1

2
�ωc. (3.8)

Then the right-hand side of the bound (3.6) is a strictly monotone increasing function of the
expectation (ψ,HLψ). Therefore, the same argument yields

Eedge
n,− ≥ En −

√
2e√
me

‖|AP|‖∞
√
En − ‖V −

0 ‖∞ (3.9)

for n = 0,1,2, . . . . If this right-hand side with the index n + 1 is strictly larger than the
right-hand side of (3.7) with the index n, then there exists a spectral gap above the Landau
band with the index n, i.e., Eedge

n+1,− > Eedge
n,+ . This gap condition can be written as

�ωc >

√
2e√
me

‖|AP|‖∞(
√
En+1 + √

En)+ e2

2me

‖|AP|‖2
∞ + ‖V +

0 ‖∞ + ‖V −
0 ‖∞. (3.10)

Clearly this is stronger than the condition (3.8) for the vector potential AP. Therefore we
have no need to take into account the condition (3.8).

4 Site Percolation on the Triangular Lattice

The classical motion of the electron is forbidden in the regions that the strength of the
potential is smaller than the deviation of the energy of the electron from the Landau energies
En of (3.2). In those regions, the Green function of the electron decays exponentially. In
order to get the decay bound for the Green function, we study the distribution of those
classically forbidden regions. We reformulate this problem as a site percolation problem
on the triangular lattice. The idea of using percolation is due to Combes and Hislop [15]
or Wang [16]. But both of their random potentials are different from the present potential
which we require for estimating the number of the localized states.

We begin with setting up site percolation on the triangular lattice L2 for the present ran-
dom potential. We say that the site z ∈ L2 is occupied if λz(ω) ∈ (−λ−, λ+). The probability
p that a site z is occupied is given by

p =
∫ λ+

−λ−
g(λ)dλ. (4.1)

The assumption (2.7) implies p > pc = 1/2. Here pc is the critical probability which equals
1/2 for the present site percolation on the triangular lattice [37, 38]. A path of L2 is a
sequence z0, z1, . . . , zn of sites zj such that all of the adjacent two site zj , zj+1 are corre-
sponding to a side of a unit triangle. If z0 = zn, then we say that the path is closed, and we
call a closed path a circuit. If all of the site zj of the path are occupied, then we say that
the path is occupied. Similarly we define an unoccupied path, an occupied circuit, etc. We
denote by Pp(A) the probability that an event A occurs.

Let Π�,�′ be a parallelogram with the lengths �a, �′a of the sides in the triangular lattice.
See Fig. 1. More precisely, it is given by

Π�,�′ :=
{
ma1 + na2

∣∣∣∣ |m| ≤ �

2
, |n| ≤ �′

2
, (m,n) ∈ Z2

}
. (4.2)
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Here we take �, �′ even integers for simplicity. Consider the event Ā�,�′ that there exists a
unoccupied path in the parallelogram Π�,�′ joining a site on the lower side with the length
� to a site on the upper side. Since the connectivity between two sites with an unoccupied
path decays exponentially for p > pc , the probability Pp(Ā�,�′) that the event Ā�,�′ occurs is
bounded as

Pp(Ā�,�′)≤ Const × � exp[−mp�
′] for p > pc = 1/2, (4.3)

where mp is a positive function of p. Let A�′,� be the event that there exists an occupied path
in the parallelogram Π�,�′ joining a site on the left side with the length �′ to a site on the
right side. Then this event A�′,� is the complementary event of Ā�,�′ because of the structure
of the triangular lattice. Immediately,

Pp(A�′,�)+ Pp(Ā�,�′)= 1. (4.4)

Combining this with the above inequality, one has

Pp(A�′,�)≥ 1 − Const × � exp[−mp�
′] for p > pc = 1/2. (4.5)

Consider a parallelogram-shaped region consisting of hexagons such that

Λ
para
�+1,�′+1(z0) :=

⋃

z∈Π�,�′
hz+z0 , (4.6)

where hz is the region of the face of the hexagon with the center z, including the six sides
of the hexagon, and z0 is the center of the region Λ

para
�+1,�′+1(z0). The region has the jagged

boundary as in Fig. 1. Moreover we define an annular region as

Λannu
3�,3�′(z0) :=Λ

para
3�,3�′(z0)\Λpara

�,�′ (z0), (4.7)

where both � and �′ take an odd integer.
Let us consider the event D�,�′ in Λannu

3�,3�′(z0) ∩ L2 that there exists an occupied circuit C
encircling the inside region Λ

para
�,�′ (z0). Then, from the inequality (4.5) and FKG inequality,6

the probability Pp(D�,�′) for this event satisfies

Pp(D�,�′)≥ [Pp(A�′,3�)]2[Pp(A�,3�′)]2

≥ 1 − Const × {� exp[−mp�
′] + �′ exp[−mp�]}

for p > pc = 1/2. (4.8)

Therefore the event of an occupied circuit occurs with the probability nearly equal to one
for large �, �′.

We denote by bj,j+1 the side zjzj+1 of a unit triangle, i.e.,

bj,j+1 := {r = λzj + (1 − λ)zj+1|λ ∈ [0,1]}. (4.9)

We define the region Rj,j+1 including the side bj,j+1 as

Rj,j+1 := {r|dist(r, bj,j+1)≤ r1} with r1 :=
√

3

2
a − ru, (4.10)

6See, for example, the book [38].
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where ru is given in the condition (2.9) for the bump u. Further we define the ribbon region
RC associated a circuit C by

RC :=
⋃

bj,j+1∈C
Rj,j+1. (4.11)

Clearly r1 is strictly positive from the condition ru ∈ (
√

3a/3,
√

3a/2) of (2.9), and the
ribbon region RC has a nonzero width 2r1.

Proposition 4.1 There appears an occupied circuit C in the annular region Λannu
3�,3�′(z0) with

a probability larger than

P perc := 1 −Cperc{� exp[−mp�
′] + �′ exp[−mp�]}, (4.12)

where Cperc is the positive constant in the right-hand side of the above bound (4.8), and p >

pc = 1/2 is given by (4.1). Further the following hold for the ribbon region RC associated
with the occupied circuit C:

dist(RC, ∂Λ
annu
3�,3�′(z0))= ru −

√
3

3
a =: r2 > 0 (4.13)

and

−λ−u1 ≤ Vω(r)≤ λ+u1 for r ∈ RC. (4.14)

Here ∂Λannu
3�,3�′(z0) is the boundary of the annular region Λannu

3�,3�′(z0), and u1 := 2‖u‖∞.

Proof The lower bound (4.12) of the probability is nothing but the right-hand side of (4.8).
The positivity (4.13) of r2 follows from the condition (2.9) of the bump u of the random
potential Vω , and the bound (4.14) follows from the condition (2.9) and the definition (2.6)
of the random potential Vω . �

5 Initial Decay Estimate for the Resolvent

Now let us estimate the decay of the resolvent (Green function) for a finite parallelogram-
shaped region. The resulting decay bound in Proposition 5.2 below will become the initial
data for the multi-scale analysis to obtain the decay bounds for the resolvent in larger scales
in the next section. However, by using the multi-scale analysis, we cannot get a similar decay
bound for the resolvent for two arbitrary points in the infinite-volume limit. On the other
hand, the fractional moment method leads us to a decay bound for a fractional moment of
the resolvent in the infinite-volume limit. Actually, as we will see in Sect. 7, the initial decay
estimate of this section yields such a decay bound. But the resolvent itself without taking a
fractional moment cannot be evaluated by the method [32]. Due to technical reason related
to these observations, we need both multi-scale analysis and fractional moment analysis, in
order to prove the existence of the conductance plateaus with a bulk order width.

Although the method in this section is basically the same as in the previous papers
[15, 16] as mentioned in the preceding section, we need more detailed analysis about the
magnetic field dependence of the decay bounds, in order to estimate the number of the lo-
calized states which yield the Hall conductance plateau with a bulk order width.

Fix the random variables λz+z0 with z ∈ L2\Π3�−1,3�′−1. Here � and �′ are odd inte-
gers larger than 1. Consider the parallelogram-shaped region Λ

para
3�,3�′(z0) centered at z0, and
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assume Λ
para
3�,3�′(z0) ⊂ Λsys with a sufficiently large box Λsys of (2.3). We write Λ3�,3�′ =

Λ
para
3�,3�′(z0) for short. Further we consider the Hamiltonian Hω restricting to the region Λ3�,3�′

with the Dirichlet boundary conditions. The Hamiltonian is written as

HΛ3�,3�′ = 1

2me

(p + eA)2 + V0|Λ3�,3�′ + V̂ω,3�,3�′ + δVω,3�,3�′ , (5.1)

where we have decomposed the random potential Vω into two parts,

V̂ω,3�,3�′(r)=
∑

z∈Π3�−1,3�′−1

λz+z0(ω)u(r − z0 − z) (5.2)

and δVω,3�,3�′ = Vω|Λ3�,3�′ − V̂ω,3�,3�′ . Clearly, the first part V̂ω,3�,3�′ of the random poten-
tial is determined by only the random variables λz+z0(ω) at the sites z + z0 lying in the
parallelogram-shaped region Λpara

3�,3�′(z0), and so it is independent of the outside random vari-
ables. Further we have

∑

z∈Π3�−1,3�′−1

u(r − z0 − z)≥ u0 for any r ∈Λ3�,3�′ (5.3)

from the assumption (2.10). This condition will be useful to obtain the Wegner estimate [39]
for the density of the states. (See Appendix A for the Wegner estimate.)

On the other hand, the random potential δVω,3�,3�′ which is supported by only the region
near the boundary of Λ3�,3�′ , depends on the outside random variables. Following [15], we
absorb this term into the operator W(χ) of (5.7) below which will appear in the geometric
resolvent equation. (See Appendix F for details.) Thus we consider the Hamiltonian,

ĤΛ3�,3�′ = 1

2me

(p + eA)2 + V0|Λ3�,3�′ + V̂ω,3�,3�′ , (5.4)

without the potential δVω,3�,3�′ , instead of the Hamiltonian HΛ3�,3�′ of (5.1).
Assume that the energy E ∈ R satisfies the condition,

Eedge
n,+ + λ+u1 <E < Eedge

n+1,− − λ−u1 with u1 = 2‖u‖∞. (5.5)

We write the resolvent as R3�,3�′ = R3�,3�′(E + iε) = (ĤΛ3�,3�′ − E − iε)−1 with ε ∈ R.
For δ ∈ (0, r2), consider the region, Λδ

3�,3�′ := {r ∈ Λ3�,3�′ |dist(r, ∂Λ3�,3�′) > δ}, where r2

is given by (4.13), and ∂Λ3�,3�′ is the boundary of the region Λ3�,3�′ . Let χδ
3�,3�′ be a C2,

positive cut-off function which satisfies

χδ
3�,3�′ |Λδ

3�,3�′
= 1 and supp |∇χδ

3�,3�′ | ⊂Λ3�,3�′ \Λδ
3�,3�′ . (5.6)

We denote by χ�,�′ the characteristic function of the region Λ
para
�,�′ (z0).

The purpose of this section is to estimate the decay of W(χδ
3�,3�′)R3�,3�′χ�,�′ , where

W(χ)= [(p + eA)2/(2me),χ ] (5.7)

for a C2 function χ . Note that
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‖W(χδ
3�,3�′)R3�,3�′χ�,�′ ‖ ≤ �

2

2me

‖(�χδ
3�,3�′)R3�,3�′χ�,�′ ‖

+ �

me

∑

i=x,y

‖(∂iχδ
3�,3�′)(pi + eAi)R3�,3�′χ�,�′ ‖, (5.8)

where we have written ∇ = (∂x, ∂y), and used

W(χ)= − i�

me

(p + eA) · ∇χ + �
2

2me

�χ = − i�

me

∇χ · (p + eA)− �
2

2me

�χ. (5.9)

We write R for the ribbon region RC in Proposition 4.1 for short. Let ε be a small positive
number, and let Cε := {r ∈ R | dist(r,C) < ε/2}, so that the region Cε has the width ε, where
C is the occupied, closed path in Proposition 4.1. Let χ1 be a C2, positive cut-off function
satisfying χ1|Λ�,�′ = 1 and supp |∇χ1| ⊂ Cε , where we have written Λ�,�′ for Λpara

�,�′ (z0) for
short. Since we can take χ1 to satisfy (∂iχδ

3�,3�′)χ1 = 0 from the definition of χδ
3�,3�′ , one has

(∂iχ
δ
3�,3�′)(pi + eAi)R3�,3�′χ�,�′ =DiR3�,3�′χ1χ�,�′ = −DiR3�,3�′W(χ1)R3�,3�′χ�,�′ , (5.10)

where we have written Di = (∂iχ
δ
3�,3�′)(pi + eAi). In order to estimate this right-hand side,

we define the ε border of the ribbon region R by Rε := {r ∈ R|dist(r, ∂R) < ε}, and define
r3 := dist(Rε,Cε) > 0. We choose a small parameter ε so that the distance r3 becomes
strictly positive. Further we introduce two C2, positive cut-off functions, χ̃ ε/2

R and χε
R, which

satisfy the following conditions:

χ̃
ε/2
R |R\Rε/2 = 1, supp |∇χ̃ ε/2

R | ⊂ Rε/2, (5.11)

and

χε
R|R\Rε = 1, χε

R|Rε/2 = 0, and supp |∇χε
R| ⊂ Rε\Rε/2. (5.12)

Consider the Hamiltonian,

HR := 1

2me

(p + eA)2 + VR, (5.13)

on the finite rectangular box Λsys of (2.3), where we impose the periodic boundary con-
ditions (2.16) with the flux quantization condition LxLy = 2πM�2

B , and the potential is
given by VR = χ̃

ε/2
R (V0 + Vω). Then one has the geometric resolvent equation, R3�,3�′χε

R =
χε
RRR−R3�,3�′W(χε

R)RR with RR := (HR−E−iε)−1, where we have used χ̃ ε/2
R χε

R = χε
R

which is easily obtained from the definitions. Using this equation and Diχ
ε
R = 0, the right-

hand side of (5.10) is written as

−DiR3�,3�′W(χ1)R3�,3�′χ�,�′ = −DiR3�,3�′χ
ε
RW(χ1)R3�,3�′χ�,�′

= DiR3�,3�′W(χε
R)RRW(χ1)R3�,3�′χ�,�′ . (5.14)

Consequently, one obtains

DiR3�,3�′χ�,�′ =DiR3�,3�′W(χε
R)RRW(χ1)R3�,3�′χ�,�′ . (5.15)

In the same way,

(�χδ
3�,3�′)R3�,3�′χ�,�′ = (�χδ

3�,3�′)R3�,3�′W(χε
R)RRW(χ1)R3�,3�′χ�,�′ . (5.16)
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If the random potential Vω satisfies the condition (4.14), then the energy E satisfying the
condition (5.5) is in the spectral gap of the Hamiltonian HR. Therefore we can apply the
Combes-Thomas method [40] to evaluate decay of the resolvent RR in the right-hand sides
of (5.15) and (5.16). We write A = supp |∇χε

R| and B = Cε , and denote by χA and χB the
characteristic function of A and B, respectively. The resolvent RR decays as

‖χARRχB‖ ≤ C
(n)

1 e−βr3 (5.17)

with a probability larger than P perc of (4.12) in Proposition 4.1, where C(n)

1 and β are positive
constants. The derivation of this decay bound and the explicit parameter dependence of
C
(n)

1 and of β for the present model are given in Appendix D. In the application of the
decay bound, we choose the cut-off function χε

R so that the region supp |∇χε
R| has a smooth

boundary.

Lemma 5.1 Let R = (Hω−E− iε)−1 with generic, bounded potentials V0,Vω and E,ε ∈ R
satisfying E /∈ σ(Hω) or ε �= 0, and let α = (αx,αy) be a vector-valued C1 function. Then

‖α · (p + eA)R‖ ≤ 2
√

2me‖R‖1/2(1 + fE,R)
1/2 max

i=x,y
{‖αi‖∞}, (5.18)

‖(pi + eAi)R(p + eA) · α‖ ≤ 2me‖|α|‖∞(1 + fE,R) (5.19)

and

‖R(p + eA) · α‖ ≤ √
2me‖|α|‖∞‖R‖1/2(1 + fE,R)

1/2, (5.20)

where we have written

fE,R = [|E| + ‖(V −
0 + V −

ω )‖∞]‖R‖. (5.21)

The proof is given in Appendix E. From (5.9) and these bounds of Lemma 5.1, one has

‖W(χ1)R3�,3�′ ‖ ≤ f1(|E|,‖R3�,3�′ ‖), (5.22)

‖R3�,3�′W(χε
R)‖ ≤ f2(|E|,‖R3�,3�′ ‖) (5.23)

and

‖(pi + eAi)R3�,3�′W(χε
R)‖ ≤ f3(|E|,‖R3�,3�′ ‖), (5.24)

for the operators in the right-hand sides of (5.15) and (5.16), where the functions, f1, f2 and
f3, are given by

f1(|E|,‖R‖) = �
2

2me

‖�χ1‖∞‖R‖

+ 2�

√
2

me

{‖R‖ + [|E| + ‖(V −
0 + V −

ω )‖∞]‖R‖2}1/2

× max
i=x,y

{‖∂iχ1‖∞}, (5.25)
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f2(|E|,‖R‖) = �
2

2me

‖�χε
R‖∞‖R‖

+ �

√
2

me

{‖R‖ + [|E| + ‖(V −
0 + V −

ω )‖∞]‖R‖2}1/2‖|∇χε
R|‖∞ (5.26)

and

f3(|E|,‖R‖) = �
2

√
2me

‖�χε
R‖∞{‖R‖ + [|E| + ‖(V −

0 + V −
ω )‖∞]‖R‖2}1/2

+ 2�‖|∇χε
R|‖∞{1 + [|E| + ‖(V −

0 + V −
ω )‖∞]‖R‖}. (5.27)

The norm ‖R3�,3�′ ‖ of the resolvent in these upper bounds can be evaluated by using the
Wegner estimate. See Appendix A for details. From the resulting Theorem A.2, we have
that, for any δE > 0,

‖R3�,3�′ ‖ ≤ (δE)−1 (5.28)

with a probability larger than

1 −CWK3‖g‖∞δE|Λpara
3�,3�′(z0)|, (5.29)

where CW is a positive constant, and the positive constant K3 is given by (A.39) in the
theorem.

Proposition 5.2 For any E satisfying the gap condition (5.5), and for any δE > 0, the
following bound is valid:

sup
ε �=0

‖W(χδ
3�,3�′)R3�,3�′(E + iε)χ�,�′ ‖

≤ C
(n)

1 e−βr3f1(|E|, (δE)−1)

[
�

2

2me

‖�χδ
3�,3�′ ‖∞f2(|E|, (δE)−1)

+ 2�

me

max
i=x,y

‖∂iχδ
3�,3�′ ‖∞f3(|E|, (δE)−1)

]
(5.30)

with probability at least

P ini := 1 − {Cperc{� exp[−mp�
′] + �′ exp[−mp�]} +CWK3‖g‖∞δE|Λpara

3�,3�′(z0)|}. (5.31)

Proof Combining (5.15), (5.16), (5.17), (5.22), (5.23), (5.24) and (5.28), the right-hand side
of (5.8) is estimated. Using (4.12), (5.29) and the inequality Prob(A ∩ B) ≥ Prob(A) +
Prob(B)− 1, the probability is estimated. �

Since we can take the ribbon region R satisfying supp δVω,3�,3�′ ∩R ⊂ ∂R, we can obtain
a similar bound for ‖δVω,3�,3�′R3�,3�′(E+iε)χ�,�′ ‖ to (5.30). Fix the ratio �′/�. For simplicity
we take �′ = �. Fix ξ > 4. We choose �= �0 to satisfy

2Cperc�0 exp[−mp�0] ≤ �
−ξ

0 /2, (5.32)

and choose δE in (5.28) so that

CWK3‖g‖∞δE|Λpara
3�0,3�0

(z0)| = �
−ξ

0 /2. (5.33)
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Clearly these implies P ini ≥ 1 − �
−ξ

0 . Therefore, if we can find a large β in (5.30) so that the
right-hand side of (5.30) with �= �′ = �0 becomes small, then we have

Prob
[
sup
ε �=0

‖W̃ δ
3�0
R3�0,3�0(E + iε)χ�0,�0‖ ≤ e−γ0�0

]
≥ 1 − �

−ξ

0 (5.34)

with some γ0 > 0, where W̃ δ
3� :=W(χδ

3�,3�)− δVω,3�,3�χ
δ
3�,3�.

For the norm ‖χ�,�′R3�,3�′(E + iε)W(χδ
3�,3�′)‖, one can obtain a similar bound to (5.30)

in the same way. As a result, we have

Prob
[
sup
ε �=0

‖χ�0,�0R3�0,3�0(E + iε)(W̃ δ
3�0
)∗‖ ≤ e−γ0�0

]
≥ 1 − �

−ξ

0 (5.35)

under the same assumption.
Let us study the condition which realizes such a large β . Consider first the case with

AP = 0, and fix the size �= �0 of the box to satisfy the condition (5.32). Further, fix �E > 0
and δ̂± > 0. Assume that the energy E ∈ R satisfies

En−1 + ‖V +
0 ‖∞ + λ+u1 + δ̂−�ωc ≤E ≤ En − ‖V −

0 ‖∞ − λ−u1 −�E (5.36)

or

En + ‖V +
0 ‖∞ + λ+u1 +�E ≤E ≤ En+1 − ‖V −

0 ‖∞ − λ−u1 − 2δ̂+�ωc, (5.37)

where E−1 = −∞. We call the energy interval satisfying the condition (5.36) the lower
localization regime around the band center En, and call the interval for the condition (5.37)
the upper localization regime. These conditions imply that we cannot treat the energy E near
the Landau level En. From the assumption AP = 0, we have

Eedge
n−1,+ ≤ En−1 + ‖V +

0 ‖∞, and Eedge
n,− ≥ En − ‖V −

0 ‖∞. (5.38)

From these bounds, one has

Eedge
n−1,+ + λ+u1 + δ̂−�ωc ≤E ≤ Eedge

n,− − λ−u1 −�E (5.39)

or

Eedge
n,+ + λ+u1 +�E ≤E ≤ Eedge

n+1,− − λ−u1 − 2δ̂+�ωc, (5.40)

and so the energy E satisfies the condition (5.5). Since the random potential Vω satisfies the
condition (4.14) on the ribbon region R, the energy E satisfies the condition in Theorem D.7
as

En−1 + ‖(V0 + Vω)
+‖∞ + δ̂−�ωc ≤E ≤ En − ‖(V0 + Vω)

−‖∞ −�E (5.41)

or

En + ‖(V0 + Vω)
+‖∞ +�E ≤E ≤ En+1 − ‖(V0 + Vω)

−‖∞ − 2δ̂+�ωc. (5.42)

As a result, we can take β = κ̃n�
−1
B ∝ √

B for B ≥ B
(n)

0,1 , and the constant C(n)

1 in (5.30) is

independent of B . Here κ̃n and B
(n)

0,1 are positive constants which depend only on the index
n of the Landau level.

On the other hand, one can choose δE to satisfy (δE)−1 ∼ Const ×B for a large B from
the condition (5.33) and K3 ∼ Const × B for a large B . The asymptotic behavior of K3 is
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easily derived from the expression (A.39). See the remark below Theorem A.2. Combining
these observations with the bound (5.30), we reach the result that there exists a large, positive
B
(n)

2 such that the statement (5.34) holds for all B ≥ B
(n)

2 . The positive constant B(n)

2 depends
only on the index n of the Landau level.

We have fixed the size � of the box to �= �0 at the first, and chosen a large strength B of
the magnetic field. However, fixing the initial size of the box is not convenient for applying
the multi-scale analysis to the present system. In fact, we must choose a sufficiently large
�0 for the initial size to satisfy a certain condition which depends on the strength B of the
magnetic field in the analysis. Clearly, changing the initial size �0 to a larger value is not
allowed for a fixed B because the right-hand side of the bound (5.30) depends on the size �0

of the box through (δE)−1 ∝ �
ξ+2
0 . In order to avoid this technical difficulty, we take �0 to

be a function of B as

�0 = �0(B)= �̂0[
√
B/B

(n)

2 ]≤odd, (5.43)

where [x]≤odd denotes the largest odd integer which is smaller than or equal to x, and B
(n)

2 is
the lower bound for the strength B of the magnetic field which is determined in the above;
the odd integer �̂0 is chosen so that �0(B

(n)

2 ) satisfies the condition (5.32).
From the definition (5.43) and β = κ̃n�

−1
B , one has

e−βr3 ≤ e−γ̃
(n)
0 �0 (5.44)

with γ̃
(n)

0 = κ̃nr3/(�B(n)
2
�̂0). Using this, (5.43) and (δE)−1 ∼ Const × B�

ξ+2
0 for a large B ,

the right-hand side of the bound (5.30) is bounded from above by

C�
2ξ+11
0 e−γ̃

(n)
0 �0 = exp[−{γ̃ (n)

0 − (logC)/�0 − (2ξ + 11)(log�0)/�0}�0] (5.45)

for a large B . Here C is the positive constant. Thus there exists a large, positive B(n)

0 such
that the statement (5.34) holds for any B ≥ B

(n)

0 . The positive constant B(n)

0 depends only on
the index n of the Landau level. In addition to this, we can choose the constant γ0 = γ

(n)

0 so
that γ (n)

0 is independent of B and of the initial size �0 = �0(B). Actually γ
(n)

0 depends only
on the index n of the Landau level.

Next consider the case with AP �= 0. In this case, we also take �0 = �0(B) of (5.43). The
decay bound (D.85) for the resolvent in Theorem D.7 was the key to the above argument.
However, for AP �= 0, we must rely on the different, weaker bound (D.25) in Theorem D.2.
In fact, we cannot obtain a similar bound to (D.85) because of a technical reason. To begin
with, let us see the difference between the two bounds. Let E be the energy in the spectrum
σ(Hω) of the Hamiltonian Hω of the whole system, and let σ(HR) be the spectrum of the
Hamiltonian HR of (5.13) having the local potential VR supported by the ribbon region R.
Then the distance between E and σ(HR) is at most of order of ‖Vω‖∞. Namely,

dist(σ (HR),E)= min{|E+ −E|, |E −E−|} ≤ ‖Vω‖∞, (5.46)

where (E−,E+) is the spectral gap of HR. Substituting this into the expression (D.24) of β
in the bound (D.25) for the resolvent, we have that the parameter β is at most of O(1) for
a large strength B of the magnetic field. Thus we cannot realize a large β by taking only a
large B .

In order to realize a large β , we require a strong disorder, together with the strong mag-
netic field. To this end, we take u = �ωcû with a fixed, dimensionless function û for the
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random potential Vω of (2.6), and choose C0 = �ωcĈ0 with a fixed, dimensionless constant
Ĉ0 as the constant in (D.6). Fix δ̂± > 0. Assume that the energy E satisfies

Ẽedge
n,+ + �ωcδ̂− ≤E ≤ Ẽedge

n+1,− − �ωcδ̂+, (5.47)

where

Ẽedge
n,+ = En +

√
2e√
me

‖|AP|‖∞
√
En + e2

2me

‖|AP|‖2
∞ + ‖V +

0 ‖∞ + λ+u1 (5.48)

and

Ẽedge
n+1,− = En+1 −

√
2e√
me

‖|AP|‖∞
√
En+1 − ‖V −

0 ‖∞ − λ−u1. (5.49)

The condition (5.47) implies that we cannot treat the energy E in the interval [Ẽedge
n,− −

�ωcδ̂+, Ẽedge
n,+ + �ωcδ̂−] near the Landau level En. From (3.7), (3.9) and (4.14), we have

E− ≤ Eedge
n,+ + λ+u1 ≤ Ẽedge

n,+ and E+ ≥ Eedge
n+1,− − λ−u1 ≥ Ẽedge

n+1,−. (5.50)

Therefore we obtain E+ − E ≥ �ωcδ̂+ and E − E− ≥ �ωcδ̂−. Substituting these into the
expression (D.24) of β , we have

β ≥
√

2me

�

√
(�ωc)3Ĉ0δ̂+δ̂−

C0(E −E−)+ 16(E+ + C̃0)(E− + C̃0)
= O(B1/2)

for a large B, (5.51)

where we have used C0 = �ωcĈ0 with a fixed constant Ĉ0. In this case, one can easily
have K3 = O(1) for a large B , from (A.3), (A.4), (A.7), (A.25) and (A.39). Therefore we
can choose (δE)−1 ∼ Const × �

ξ+2
0 to satisfy the condition (5.33). Consequently the same

statement (5.34) holds for a strong magnetic field and for a strong potential u= O(B).

6 Multi-Scale Analysis

Starting from the initial decay estimates (5.34) and (5.35) for the resolvent, we derive similar
estimates for larger scales without losing too much. The main results of this section are given
in Lemmas 6.2 and 6.3 below. The proofs are given in Appendix F. We stress again that
these results for large but finite volumes never yield a similar decay bound for two arbitrary
points in the whole plane R2. As to the resolvent in the infinite volume, we will rely on
the fractional moment method in the next section. The multi-scale analysis given here is a
simplified version [31, 41, 42] of [29]. Although the method itself is well known, we must
carefully handle the magnetic field dependence of the decay bound for the resolvent again.

Let � be an odd integer larger than 1, and denote by Λ�(z) =Λ
para
�,� (z) the parallelogram

box with sidelength � and with center z ∈ Γ� := �L2 = {m�a1 + n�a2 | m,n ∈ Z}. The dis-
tance between two lattice sites in Γ� is defined by |z| = max{|m|�, |n|�}. Fix a small δ > 0.
Let χ�(z) be the characteristic function of the region Λ�(z), and let χδ

3�(z) be a C3, positive
cut-off function satisfying

χδ
3�(z)|Λδ

3�(z)
= 1, and supp|∇χδ

3�(z)| ⊂Λ3�(z)\Λδ
3�(z), (6.1)
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where Λδ
3�(z) := {r ∈Λ3�(z)|dist(r, ∂Λ3�(z) > δ}. We write

R3�,z(E + iε)= (ĤΛ3�(z) −E − iε)−1,
(6.2)

W̃ δ
3�(z)=W(χδ

3�(z))− δVω,3�,3�χ
δ
3�(z).

Here the Hamiltonian ĤΛ3�(z) is given by (5.4).

Definition 6.1 A parallelogram box Λ3�(z) is called γ -good for some γ > 0 if the following
two bounds hold:

sup
ε �=0

‖W̃ δ
3�(z)R3�,z(E + iε)χ�(z)‖ ≤ e−γ � (6.3)

and

sup
ε �=0

‖χ�(z)R3�,z(E + iε)(W̃ δ
3�(z))

∗‖ ≤ e−γ �. (6.4)

Remark The probability Prob[Λ3�(z) is γ -good] is independent of the center z.

Lemma 6.2 Let �, �′ be odd integers larger than 1 such that �′ is a multiple of � and satisfies
�′ > 4�. Assume Prob[Λ3�(· · ·) is γ -good] ≥ 1 − η with a small η > 0. Then

Prob[Λ3�′(· · ·) is γ ′-good] ≥ 1 − η′ (6.5)

with

η′ = (5�′/�)4η2 + (�′)−ξ /2 (6.6)

and with

γ ′ = γ (1 − 4�/�′)− �−1 log(c0K
2
3 |E|)− (�′)−1

(2s + 7) log �′. (6.7)

Here c0 is a positive constant.

We define a sequence of monotone increasing length scales �k as

�k+1 = �k[�1/2
k ]≥odd for k = 0,1,2, . . . , (6.8)

where [x]≥odd denotes the smallest odd integer which is larger than or equal to x. Clearly we
have �k+1 ≥ �

3/2
k and �k+1 > 4�k for all k if the initial scale �0 is large enough.

Lemma 6.3 Take �0 = �0(B) which is given by (5.43), i.e., the function of the strength B of
the magnetic field. Then there exists a minimum strength B0 > 0 of the magnetic field such
that

Prob[Λ3�k (· · ·) is γ∞-good] ≥ 1 − (�k)
−ξ (6.9)

with some γ∞ > 0 for any B >B0 and for any k.
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7 Fractional Moment Bound for the Resolvent

As mentioned at the beginning of the preceding section, the multi-scale analysis has the
disadvantage for the decay estimate of the resolvent in the infinite volume. In order to com-
pensate for the disadvantage, we rely on the fractional moment method. The key points
of the method are that the fractional moment of the resolvent is finite due to the resonance-
diffusing effect of the disorder, and satisfies a “correlation inequality” [32]. But the resolevnt
itself without taking the fractional moment cannot be evaluated by the method, as we already
mentioned above. The aim of this section is to obtain the decay bound (7.1) below for the
fractional moment of the resolvent for the present system, following Ref. [32]. Further, the
decay bound (7.1) so obtained yields the decay bound (7.17) below for the Fermi sea pro-
jection PF. In the article [32], the authors showed that a decay estimate of a resolvent in the
multiscale analysis yields a fractional moment bound for the resolvent. In this section, we
obtain the fractional moment bound more directly from the initial decay estimate which was
studied in Sect. 5. Actually, the initial decay estimate was the initial data for the multi-scale
analysis in Sect. 6.

Consider the present system described by the Hamiltonian Hω with the random potential
Vω on a finite region Λ or the infinite plane R2. Let χA, χB be the characteristic functions
of the sets A,B with a compact support, respectively. Then the fractional moment bound for
the resolvent is

sup
ε �=0

E‖χA(EF + iε −Hω)
−1χB‖s ≤ Const × e−μr , (7.1)

where E is the expectation with respect to the random variables of the potential Vω , s ∈
(0,1/3), μ is a positive constant, and we have written r = dist(A,B).

We denote by s�(u) the square box centered at u = (u1, u2) ∈ R2 with the sidelength �,
i.e., s�(u)= {r = (x, y) ∈ R2|max{|x − u1|, |y − u2|} ≤ �/2}. Consider the Hamiltonian

HsL(z0) = 1

2me

(p + eA)2 + (V0 + Vω)|sL(z0) (7.2)

on the square region sL(z0) centered at z0 ∈ L2 with the sidelength L, where we impose the
Dirichlet boundary conditions, and write the resolvent as

RL =RL(E + iε)= (HsL(z0) −E − iε)−1 (7.3)

for E,ε ∈ R. We write χr̃(z) for the characteristic function of the square box sr̃ (z) with
the sidelength r̃ := √

3a/2 for z ∈ L2. Let δAL(z0) = sL−3r̃ (z0)\sL−23r̃ (z0), and let z′ ∈
δAL(z0)∩ L2. In order to obtain the fractional moment bound for the resolvent, we want to
evaluate

sup
ε �=0

E[‖χr̃(z′)RL(E + iε)χr̃ (z0)‖s] for s ∈ (0,1/3). (7.4)

In the same way as in Sect. 4, one can find a ribbon region R such that the conditions
(4.10) and (4.14) are satisfied with probability larger than

P perc = 1 −CpercLe−mpL with two positive constants, Cperc and mp, (7.5)

and that the ribbon R encircles the square box sr̃ (z0), and that the following two conditions
are satisfied: dist(R, sr̃ (z0)) > 0 and dist(R, sr̃ (z′)) > 0 for all z′ ∈ δAL(z0) ∩ L2. Further,
we can find a C2, positive cut-off function χ1 such that χ1|sr̃ (z0) = 1 and supp |∇χ1| ⊂ Cε ,
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where the region Cε near the center C of the ribbon R is the same as in Sect. 4. Since we can
choose χ1 so that χr̃(z′)χ1 = 0, we have

χr̃(z′)RLχr̃(z0)= χr̃(z′)RLχ1χr̃(z0)= χr̃(z′)RLW(χ1)RLχr̃ (z0). (7.6)

In the same way as in Sect. 4, we can take the C2, positive cut-off function χε
R and the

resolvent RR for the Hamiltonian HR. Therefore the right-hand side can be further written
as

χr̃(z′)RLχr̃(z0) = χr̃(z′)RLW(χ1)RLχr̃(z0)

= χr̃(z′)RLχ
ε
RW(χ1)RLχr̃ (z0)

= −χr̃(z′)RLW(χε
R)RRW(χ1)RLχr̃(z0), (7.7)

where we have used χε
R|R\Rε = 1, χr̃(z0)χ

ε
R = 0 and the geometric resolvent equation,

RLχ
ε
R = χε

RRR − RLW(χε
R)RR. Using the bounds (5.22) and (5.23) for the resolvent RL

instead of R3�,3�′ , we obtain

‖χr̃(z′)RLχr̃ (z0)‖ ≤ ‖χr̃(z′)RLW(χε
R)χARRχBW(χ1)RLχr̃(z0)‖

≤ ‖RLW(χε
R)‖‖χARRχB‖‖W(χ1)RL‖

≤ f1(|E|,‖RL‖)f2(|E|,‖RL‖)‖χARRχB‖, (7.8)

where A = supp |∇χε
R| and B = Cε ⊃ supp |∇χ1|. In the same way as in Sect. 4, we have

‖χARRχB‖ ≤ C
(n)

1 e−βr3 (7.9)

with probability larger than (1 − CpercLe−mpL), where C
(n)

1 and β are the corresponding
positive constants. By using the Wegner estimate, the norm of the resolvent can be also
evaluated as ‖RL‖ ≤ (δE)−1 with probability larger than (1 − CW‖g‖∞δEL2). We choose
L to satisfy

CpercLe−mpL ≤ (L/a)−ξ̃ /2 (7.10)

with a positive number ξ̃ which we will determine below, and choose δE so that

CW‖g‖∞δEL2 = (L/a)−ξ̃ /2. (7.11)

Then we have

‖χr̃(z′)RLχr̃(z0)‖ ≤ C
(n)

1 f1(|E|, (δE)−1)f2(|E|, (δE)−1)e−βr3 (7.12)

with probability larger than (1 − (L/a)−ξ̃ ). We denote by DL the set of the events ω satis-
fying the above inequality (7.12). Note that

E[‖χr̃(z′)RLχr̃(z0)‖s] ≤ E[‖χr̃(z′)RLχr̃ (z0)‖sI(DL)]
+ E[‖χr̃(z′)RLχr̃(z0)‖sI(Dc

L)], (7.13)

where I(A) is the indicator function of an event A. The first term in the right-hand side is
estimated as

E[‖χr̃(z′)RLχr̃(z0)‖sI(DL)] ≤ [C(n)

1 f1(|E|, (δE)−1)f2(|E|, (δE)−1)]se−sβr3 . (7.14)



Widths of the Hall Conductance Plateaus 865

Using the Hölder inequality with s < t < 1, the second term is estimated as

E[‖χr̃(z′)RLχr̃(z0)‖sI(Dc
L)] ≤ E[‖χr̃(z′)RLχr̃(z0)‖t ]s/tE[I(Dc

L)]1−s/t

≤ Const ×Bs × (L/a)−(1−s/t)ξ̃ , (7.15)

where B is the strength of the magnetic field, and we have used the fractional moment
bound (3.19) in [32], and E[I(Dc

L)] ≤ (L/a)−ξ̃ . The factor Bs comes from a careful but
easy calculation in the fractional moment bound. The positive constant depends only on the
index of the Landau level in the condition (5.5) for the energy E.

We take L to be a function of B as L = L(B) = Const × B1/2. Then the argument of
Sect. 5 yields βr3 = Const × B1/2. We choose t and ξ̃ to satisfy (1 − s/t)ξ̃ > 3 + 12s.
Combining these, (7.13), (7.14) and (7.15), we obtain that the quantity,

B5sL3 sup
ε �=0

E[‖χr̃(z′)RL(E + iε)χr̃ (z0)‖s], (7.16)

becomes small for a sufficiently large B of the strength of the magnetic field. This implies
that the finite-volume criteria7 of Theorem 1.2 in [32] is satisfied for magnetic fields whose
strength B is larger than a positive B0. The factor B5s comes from the B-dependence of the
constant in (1.18) of the criteria. Thus the fractional moment bound (7.1) for the resolvent
holds for such a large magnetic field.

Let PF be the projection on energies smaller than the Fermi energy EF, and let χA, χB
be the characteristic functions of the sets A,B with a compact support, respectively. The
following Lemma 7.1 is due to [32]. In order to make the paper self-contained, we give a
proof which is slightly different from that in [32].

Lemma 7.1 The following bound holds:

E‖χAPFχB‖ ≤ Const × exp[−μdist(A,B)]. (7.17)

Proof Write R(z)= (z−Hω)
−1. Using the contour integral, one has

χAPFχB = 1

2πi

∫ EF

E0

dEχAR(E + iy−)χB + 1

2πi

∫ y+

y−
idyχAR(EF + iy)χB

+ 1

2πi

∫ E0

EF

dEχAR(E + iy+)χB + 1

2πi

∫ y−

y+
idyχAR(E0 + iy)χB, (7.18)

where E0 is a real constant satisfying Hω > E0. The integral near the Fermi energy is jus-
tified because the operator norm limit, limε↓0 χAR(E ± iε)χB, exists [32, 42, 43] almost
surely for almost every energy E ∈ R. We can choose finite E0 and y± so that

‖χAR(E0 + iy)χB‖ ≤ Const × e−μr for any real y (7.19)

and

‖χAR(E + iy±)χB‖ ≤ Const × e−μr for E ∈ [E0,EF] (7.20)

7We should remark the following: The condition z′ ∈ δAL(z0) ∩ L2 is slightly different from that in Theo-
rem 1.2 of [32]. In fact, our argument relies on Lemma 4.1 of [32].
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with the same decay constant μ. See Appendix D.1 for details. Therefore it is enough to
evaluate the second integral in the right-hand side of (7.18). It is written

lim inf
εn→0

∫

I (εn)

dyχAR(EF + iy)χB, (7.21)

where {εn}n is a decreasing sequence, and we have written I (εn)= [y−, y+]\(−εn, εn). Us-
ing Fatou’s lemma, we have

E

∥∥∥∥
∫ y+

y−
dyχAR(EF + iy)χB

∥∥∥∥ ≤ lim inf
εn→0

E

∥∥∥∥
∫

I (εn)

dyχAR(EF + iy)χB

∥∥∥∥. (7.22)

This right-hand side is evaluated as

E

∥∥∥∥
∫

I (εn)

dyχAR(EF + iy)χB

∥∥∥∥

≤ E
∫

I (εn)

dy‖χAR(EF + iy)χB‖

≤ E
∫

I (εn)

dy‖χAR(EF + iy)χB‖s‖χAR(EF + iy)χB‖1−s

≤ E
∫

I (εn)

dy‖χAR(EF + iy)χB‖s |y|s−1

≤ Const × s−1(|y+|s + |y−|s)e−μr , (7.23)

where we have used Fubini-Tonelli theorem and the decay bound (7.1) for the resolvent.
This yields the desired result. �

8 Finite Volume Hall Conductance

We recall the previous results of the linear response coefficients [8]. The total conductance
for finite volume and for t ≥ 0 is written

σtot,sy(t)=
{
σxy + γxy · t + δσxy(t), for s = x;
γyy · t + δσyy(t), for s = y.

(8.1)

Our goal is to give the proof of all the statements of Theorems 2.1 and 2.2. Namely, when
the Fermi level lies in the localization regime, the Hall conductance σxy is quantized to the
integer as in (2.26), and both of the acceleration coefficients γsy vanish, and the corrections
δσsy(t) due to the initial adiabatic process are small as in the bound (2.27). For this purpose,
we first treat the Hall conductance σxy , and prepare some technical lemmas for the Hall
conductance σxy for finite volume in this section.

In the following, we write Λ=Λsys for short. The explicit form of the Hall conductance
σxy for the finite region Λ is given by [8]

σxy = − i�e2

LxLy

TrPF,Λ[Px,Λ,Py,Λ], (8.2)
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where PF,Λ is the corresponding Fermi sea projection and

Ps,Λ = 1

2πi

∫

γ

dzRΛ(z)vsRΛ(z) for s = x, y. (8.3)

Here vs are the velocity operators, i.e., (vx, vy)= v(t = 0) for v(t) of (2.21), and RΛ = (z−
Hω,Λ)

−1 with the finite-volume Hamiltonian Hω,Λ with the periodic boundary conditions;
the closed path γ encircles the energy eigenvalues below the Fermi level EF.

Take two rectangular regions Ω and Λ′ so that the following conditions are satisfied:

Ω ⊂Λ′ ⊂Λ, dist(Ω, ∂Λ′)= δL/2 and dist(Λ′, ∂Λ)= δL/2, (8.4)

where we have taken the width δL of the boundary regions as δL = a(L/a)κ with κ ∈
(1/2,1) and with L = max{Lx,Ly}. Here a is the lattice constant of the triangular lattice
L2. Clearly we can take Ω satisfying |Ω| = O(L2) and |Λ\Ω| = O(LδL). We decompose
σxy into two parts as σxy = σ in

xy + σ out
xy with

σ in
xy = − i�e2

LxLy

TrχΩPF,Λ[Px,Λ,Py,Λ]χΩ (8.5)

and

σ out
xy = − i�e2

LxLy

Trχc
ΩPF,Λ[Px,Λ,Py,Λ]χc

Ω, (8.6)

where χΩ is the characteristic function of Ω , and χc
Ω = 1 − χΩ . We choose k so that

8�ka ≤ δL < 8�k+1a, (8.7)

where �k is a length scale in the sequence {�k}k which is determined by the recursive equa-
tion (6.8).

Lemma 8.1 Let A,B be subsets of Λ. If dist(A,B) ≥ 7�ka/2, then the following bound is
valid:

‖χARΛ(z)χB‖ ≤ Const ×Lκ(ξ−2)+4 exp[−μ∞L2κ/3] (8.8)

with probability larger than (1 − Const × L−2[κ(ξ+2)−3]/3), where χA, χB are, respectively,
the characteristic functions of A,B, and μ∞ is a positive constant.

Proof In order to prove the statement of Lemma 8.1, we rely on the argument of the
multiscale analysis in Sect. 6. Therefore we use the same notations, Λ�(z),χ�(z),χδ

3�(z),
etc. From the assumption dist(A,B) ≥ 7�ka/2, there is a sublattice LB of �kL2 such that
B ⊂ ⋃

u∈LB
Λ�k (u) and that dist(A,Λ3�k (u)) > 0 for all u ∈ LB . Using the adjoint of the

geometric resolvent equation,

RΛ(z)χ
δ
3�k
(u)= χδ

3�k
(u)R3�k,u(z)+RΛ(z)(W̃

δ
3�k
(u))∗R3�k,u(z), (8.9)

we have

χARΛ(z)χ�k (u) = χAχ
δ
3�k
(u)R3�k,u(z)χ�k (u)+ χARΛ(z)(W̃

δ
3�k
(0))∗R3�k,u(z)χ�k (u)

= χARΛ(z)(W̃
δ
3�k
(u))∗R3�k,u(z)χ�k (u) (8.10)
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for u ∈ LB , where we have used χAχ
δ
3�k
(u) = 0 which follows from dist(A,Λ3�k (u)) > 0.

This yields

‖χARΛ(z)χ�k (u)‖ ≤ ‖RΛ(z)‖‖(W̃ δ
3�k
(u))∗R3�k,uχ�k (u)‖. (8.11)

On the other hand, we can prove the bound which is given by replacing the operator
W̃ δ

3�′(u) with its adjoint in the bound (F.24) in the same way as in the proof of Lemma F.3.
Therefore the argument of Lemma 6.3 yields

‖(W̃ δ
3�k
(u))∗R3�k,uχ�k (u)‖ ≤ e−γ∞�k (8.12)

with the probability larger than (1 − �
−ξ

k ). From the Wegner estimate (A.38), one has
‖RΛ‖ ≤ CWK3‖g‖∞�

ξ

k |Λ| with probability larger than (1 − �
−ξ

k ). From (F.37), we have
δL < 8�k+1a < 16�3/2

k a. Immediately, (δL/16a)2/3 ≤ �k . Substituting these inequalities into
(8.11), we have

‖χARΛ(z)χ�k (u)‖ ≤ Const × �
ξ

kL
2 exp[−μ∞L2κ/3] (8.13)

with probability larger than (1 − 2�−ξ

k ), where μ∞ is the corresponding positive constant.
The set B is covered by the sets Λ�k (u). The number |LB| is at most O(L2/�2

k). Let MΛ

denote the event that the bound (8.13) holds for all of the site u ∈ �kL satisfying Λ�k ∩Λ �= ∅.
Clearly the probability Prob(MΛ) that the event MΛ occurs, is larger than (1 − Const ×
�

−ξ

k L2�−2
k ). From these observations, one can easily show the statement of the lemma. �

Let δ be a small positive number, and define Λδ := {r ∈ Λ | dist(r, ∂Λ) > δ}. Then one
has Λ\Λδ/2 = {r ∈ Λ | dist(r, ∂Λ) ≤ δ/2}. Let χδ

Λ ∈ C2(Λ) be a positive cutoff function
satisfying the following two conditions:

χδ
Λ|Λδ = 1 and χδ

Λ|Λ\Λδ/2 = 0. (8.14)

Lemma 8.2 The Hall conductance for the bulk region is written

σ in
xy = e2

h

2πi

LxLy

TrχΩPF,Λ[[PF,Λ, x], [PF,Λ, y]]χΩ +O(exp[−μ′
∞L2κ/3]) (8.15)

with probability larger than (1 − Const ×L−2[κ(ξ+2)−3]/3), where μ′∞ is a positive constant.

Remark Since κ(ξ +2)−3 > 0 from their definitions, the Hall conductance σ in
xy for the bulk

region in the infinite volume limit is given by

σ in
xy = e2

h
lim
L↑∞

I(PF,Λ;Ω), (8.16)

with probability one if the limit in the right-hand side exists. Here we have written

I(PF,Λ;Ω)= 2πi

|Ω| TrχΩPF,Λ[[PF,Λ, x], [PF,Λ, y]]χΩ. (8.17)

Proof Using the contour integral representation as in (8.3), one has

TrχΩPF,ΛPx,ΛPy,Λ = 1

(2πi)2

∫

γ

dz1

∫

γ

dz2 TrχΩRΛ(z1)RΛ(z2)vxRΛ(z2)Py,ΛχΩ. (8.18)
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The integrand is decomposed into two parts as

TrχΩRΛ(z1)RΛ(z2)vxRΛ(z2)Py,ΛχΩ

= TrχΩRΛ(z1)RΛ(z2)vxχ
δ
ΛRΛ(z2)Py,ΛχΩ

+ TrχΩRΛ(z1)RΛ(z2)vx(1 − χδ
Λ)RΛ(z2)Py,ΛχΩ. (8.19)

For the second term in the right-hand side, we have

‖χΩRΛ(z1)RΛ(z2)vx(1 − χδ
Λ)RΛ(z2)‖

≤ ‖χΩRΛ(z1)‖‖χΛ′RΛ(z2)vx(1 − χδ
Λ)RΛ(z2)‖

+ ‖χΩRΛ(z1)(1 − χΛ′)‖‖RΛ(z2)vx(1 − χδ
Λ)RΛ(z2)‖. (8.20)

From (5.18), (8.4), (8.7) and Lemma 8.1, this gives the small contribution. From this and the
contour integral representation, it is sufficient to consider

TrχΩRΛ(z1)RΛ(z2)vxχ
δ
ΛRΛ(z2)RΛ(z3)vyχ

δ
ΛRΛ(z3)χΩ. (8.21)

Using the identity, vxχδ
Λ = (i/�)[Hω,x]χδ

Λ, one has

RΛ(z2)vxχ
δ
ΛRΛ(z2)= i

�
[RΛ(z2), xχ

δ
Λ] − i

�
RΛ(z2)xW(χδ

Λ)RΛ(z2). (8.22)

In the same way, the second term in the right-hand side leads to the small correction. The
statement of the lemma follows from these observations. �

We denote by Z2
b the rectangular lattice {(b1n1, b2n2) | (n1, n2) ∈ Z2} with a pair

b = (b1, b2) of lattice constants, and denote by (Z2
b)

∗ the dual lattice, i.e., (Z2
b)

∗ = Z2
b −

(b1, b2)/2. Let sb(u) be the b1 ×b2 rectangular box centered at u = (u1, u2) ∈ Z2
b , and χb(u)

the characteristic function of sb(u). When we consider the characteristic function χb(u) on
the region Λ, we restrict χb(u) to Λ.

Lemma 8.3 Let u ∈ Z2
b satisfying sb(u) ∩ Λ �= ∅. Then there exists a positive constant C

which is independent of the location u and of the size |Λ| such that

E[|Trχb(u)PF,Λ[PF,Λ, �][PF,Λ, �]χb(u)|]<C, (8.23)

where � is either x or y.

Proof Note that

E[|Trχb(u)PF,Λ[PF,Λ, x][PF,Λ, y]χb(u)|]
≤

∑

v,w∈Z2
b
:

sb(v)∩Λ�=∅,sb(w)∩Λ�=∅

E[|Trχb(u)PF,Λχb(v)[PF,Λ, x]χb(w)[PF,Λ, y]χb(u)|]. (8.24)

In order to estimate the summand in this right-hand side, we introduce the two component
function (xb, yb) of r which is defined by (xb, yb) = (u1, u2) for r ∈ sb(u) with u ∈ Z2

b .
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Using this function, one has

[PF,Λ, x] = [PF,Λ, (x − xb)] + [PF,Λ, x
b],

(8.25)
[PF,Λ, y] = [PF,Λ, (y − yb)] + [PF,Λ, y

b].
Further we note that, for any bounded operator A,

|Trχb(u)PF,Λχb(v)A| ≤ √
Trχb(u)PF,Λχb(u) · √TrAA∗χb(v)PF,Λχb(v)

≤ ‖A‖√Trχb(u)PF,Λχb(u) · √Trχb(v)PF,Λχb(v)

≤ Const × ‖A‖, (8.26)

where we have used

Trχε(u)PFχε(u) = Trχε(u)
1

H0 + C0
(H0 + C0)PF(H0 + C0)

1

H0 + C0
χε(u)

= Trχε(u)
1

H0 + C0
(Hω − Vω + C0)PF(Hω − Vω + C0)

1

H0 + C0
χε(u)

≤ Const × Trχε(u)
(

1

H0 + C0

)2

χε(u) <∞. (8.27)

Here we have taken a real number C0 satisfying H0 + C0 > 0, and used ‖HωPF‖ < ∞.
Therefore the statement of the lemma follows from the norm bounds such as

‖χb(v)[PF,Λ, x
b]χb(w)‖ ≤ |w1 − v1|‖χb(v)PF,Λχb(w)‖, (8.28)

‖χb(v)[PF,Λ, (x − xb)]χb(w)‖ ≤ Const × ‖χb(v)PF,Λχb(w)‖ (8.29)

and

E[‖χb(v)PF,Λχb(w)‖‖χb(w)PF,Λχb(u)‖]
≤ {E[‖χb(v)PF,Λχb(w)‖2]}1/2{E[‖χb(w)PF,Λχb(u)‖2]}1/2

≤ Const × e−μ|v−w|/2e−μ|w−u|/2, (8.30)

where we have used Schwarz’s inequality, ‖χb(v)PF,Λχb(w)‖ ≤ 1, and the bound (7.17) for
the Fermi sea projection. �

In the same way, we obtain

Lemma 8.4 Let u,v ∈ Z2
b satisfying sb(u) ∩Λ �= ∅ and sb(v) ∩Λ �= ∅. Then there exists a

positive constant C which is independent of the locations u,v and of the size |Λ| such that

E[|Trχb(u)PF,Λ[PF,Λ, �][PF,Λ, �]χb(u) · Trχb(v)PF,Λ[PF,Λ, �][PF,Λ, �]χb(v)|]<C,

(8.31)
where � is either x or y.

Using the magnetic translations and the argument in the proof of Lemma 8.2, the Hall
conductance for the boundary region is written as

σ out
xy = e2

h

2πi

LxLy

∑

Ω ′
TrχΩ ′P ′

F,Λ[[P ′
F,Λ, x], [P ′

F,Λ, y]]χΩ ′ +O(exp[−μ′
∞L2κ/3]) (8.32)
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with probability larger than (1 − Const ×L−2[κ(ξ+2)−3]/3), where Ω ′ is the translate of a por-
tion of the boundary region Λ\Ω , and P ′

F,Λ is the corresponding translate of the Fermi sea
projection. From this result, the Hall conductance σ out

xy for the boundary region is vanishing
in a limit L ↑ ∞ with probability one:

Theorem 8.5 There exists a sequence {Ln}n of the system sizes L= Ln such that |σ out
xy | → 0

as Ln → ∞ for almost every ω.

Proof Write

I ′(L)= 1

LxLy

∑

Ω ′
|TrχΩ ′P ′

F,Λ[[P ′
F,Λ, x], [P ′

F,Λ, y]]χΩ ′ |. (8.33)

By Lemma 8.3, we have E[I ′(L)] → 0 as L → ∞. Combining this and the inequality
E[I ′(L)] ≥ εProb(I ′(L) > ε), we can find a sequence {Ln}n of the system sizes L = Ln

such that {Ln}n satisfies the following two conditions:
∑

n

Prob(I ′(Ln) > εn) <∞ and
∑

n

L−2[κ(ξ+2)−3]/3
n <∞, (8.34)

where {εn}n is a sequence satisfying εn → 0 as n → ∞. The application of Borel-Cantelli
theorem yields that for almost every ω, there exists a number n0(ω) which may depend
on ω such that I ′(Ln) ≤ εn for all n ≥ n0(ω) and that the finite size correction for σ out

xy is

evaluated by O(exp[−μ′∞L
2κ/3
n ]) for all n ≥ n0(ω). By combining this with the expression

(8.32) of σ out
xy , the statement of the theorem is proved. �

9 Integrality of the Hall Conductance—Index Theoretical Approach

In this section, integrality of the Hall conductance is proved by using the index theoretical
method [10, 11, 20, 21].

When we apply the method of [10, 11] using a pair index of two projections to a concrete
example of a continuous random model such as the present system, there arises a problem
that we need a decay bound for the integral kernel of the Fermi sea projection whose Fermi
energy lies in the localization regime. But getting such a decay bound is very difficult, and
so this problem is still unsolved. Recently, Germinet, Klein and Schenker [25] proved the
constancy of the Hall conductance for a random Landau Hamiltonian which is translation
ergodic, without relying on a decay bound for the integral kernel of the Fermi sea projec-
tion. In their proof, they used a consequence of the multiscale analysis which is related to
multiplicity of the eigenvalues of the Hamiltonian, for the Hall conductance formula8 which
is expressed in terms of switch functions instead of the position operator of the electron.
This Hall conductance formula was justified [7] within the linear response approximation
under the assumption on a spectral gap above the Fermi level. The integer of the quantized
value of the Hall conductance can be determined under the assumption that the disordered-
broadened Landau bands are disjoint, i.e., there exists a nonvanishing spectral gap between
two neighboring Landau bands.

8The explicit form of the Hall conductance formula using switch functions is given in Appendix I. We also
discuss the relation between this and the standard Hall conductance formula using the position operator
instead of the switch functions.
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In our approach, we assume neither the above disjoint condition for the Landau bands
nor the periodicity of the potentials V0 and AP which implies a translation ergodic Hamil-
tonian. But we must require the “covering condition” (2.10) which is not required in [25].
This condition is needed to estimate the number of the localized states and to obtain a decay
bound [32] for a fractional moment of the resolvent. In order to circumvent the above prob-
lem about a decay estimate for the integral kernel of the Fermi sea projection, we introduce
a partition of unity which is a collection of the characteristic functions of a small rectangular
boxes.

Let sε(u) be the ε1 ×ε2 rectangular box centered at u ∈ (Z2
ε)

∗ with the pair ε = (ε1, ε2) of
the sidelengths, and χε(u) the characteristic function. We take N1ε1 = a and N2ε2 = √

3a/2
with large positive integers N1,N2 and with the lattice constant a of the triangular lattice L2

so that the set of all the boxes sε(u) is invariant under the lattice translations of the triangular
lattice L2. When we take the limit ε1, ε2 ↓ 0, we keep the ratio ε1/ε2 finite. We introduce a
unitary operator,

Uε
a =

∑

u∈(Z2
ε )

∗
χε(u) exp[iθa(u)] for a ∈ Z2

ε, (9.1)

where θa(u) is the angle of sight from a to u, i.e., arg(u − a) in the terminology of the
complex plane. Consider the operator, T := PF −Uε

aPF(U
ε
a )

∗.

Lemma 9.1 For fixed parameters ε1, ε2, E[Tr |T |3]<∞.

Proof Note that

T = PF −Uε
aPF(U

ε
a )

∗ =
∑

u,v∈(Z2
ε )

∗
χε(u)[PF −Uε

aPF(U
ε
a )

∗]χε(v)

=
∑

u,v∈(Z2
ε )

∗
[1 − eiθa(u)−iθa(v)]χε(u)PFχε(v). (9.2)

Define tu,v := 1 − eiθa(u)−iθa(v) and Tu,v := tu,vχε(u)PFχε(v). Following the idea of [21], we
introduce T (b)

u,v = Tu,vδu−b,v. Clearly, one has
∑

b T
(b)

u,v = Tu,v and

(T (b)∗T (b))u,v =
∑

w

T ∗
w,uδw−b,uTw,vδw−b,v

= T ∗
u+b,uTu+b,uδu,v

= |tu+b,u|2χε(u)PFχε(u + b)PFχε(u)δu,v. (9.3)

Using these identities and Minkowski’s inequality, one obtains

(E Tr |T |3)1/3 ≤
∑

b

(E Tr |T (b)|3)1/3

≤
∑

b

{∑

u

|tu+b,u|3E[Tr |χε(u)PFχε(u + b)PFχε(u)|3/2]
}1/3

. (9.4)

Since the inequality,

|1 − eiθa(u)−iθa(v)| ≤ 2|u − v|
|u − a| , (9.5)
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holds as in [10, 11], one obtains

∑

u

|tu+b,u|3 ≤ 23
∑

u

|b|3
|u − a|3 ≤ Const × |b|3. (9.6)

Note that

Tr |χε(u)PFχε(u + b)PFχε(u)|3/2

≤ √
Trχε(u)PFχε(u + b)PFχε(u)

× √
Trχε(u)PFχε(u + b)PFχε(u)PFχε(u + b)PFχε(u)

≤ √
Trχε(u)PFχε(u) · ‖χε(u)PFχε(u + b)‖√Trχε(u)PFχε(u)

≤ ‖χε(u)PFχε(u + b)‖Trχε(u)PFχε(u). (9.7)

From this, the decay bound (7.17) for the Fermi sea projection and (8.27), we have

E[Tr |χε(u)PFχε(u + b)PFχε(u)|3/2] ≤ Const × e−μ|b|. (9.8)

Combining this, (9.4) and (9.6) yields

(E Tr |T |3)1/3 ≤ Const ×
∑

b

|b|e−μ|b|/3 <∞. (9.9)
�

The result implies that the operator T 3 is trace class for almost every ω. Thus we can
define the relative index [10, 11],

Index(PF,U
ε
aPF(U

ε
a )

∗) := Tr(PF −Uε
aPF(U

ε
a )

∗)3, (9.10)

for the pair of the projections. This right-hand side takes an integer value as proved in
[10, 11].

Let �P be a large positive integer. Let ALP ∈ C1(R2) be a periodic vector potential satis-
fying the periodicity,

ALP(r + �Pa1)= ALP(r + �Pa2)= ALP(r), (9.11)

and V LP
0 a periodic electrostatic potential satisfying the same periodicity,

V LP
0 (r + �Pa1)= V LP

0 (r + �Pa2)= V LP
0 (r), (9.12)

where aj are the primitive translation vectors of the triangular lattice L2. In order to prove
integrality of the Hall conductance, we consider the Hamiltonian,

H LP
ω = 1

2me

[p + e(ALP + A0)]2 + V LP
0 + Vω, (9.13)

on the whole plane R2. Namely this Hamiltonian is obtained by replacing AP,V0 with
ALP,V LP

0 in the Hamiltonian Hω of (2.1). We choose the integer �P so that the unit cell
of the large triangular lattice �PL2 contains the rectangular region Λsys of (2.3) on which the
present finite Hall system is defined.
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We note that the magnetic translations act on the random potential Vω as the correspond-
ing translation, and that the pair index does not depend on the location a of the flux [10, 11].
Therefore the pair index for the Hamiltonian H LP

ω is an invariant function of the random-
ness under the lattice translations of the triangular lattice �PL2. Further, since the index is
measurable [10, 11] and integrable with respect to the random variables, Birkhoff’s ergodic
theorem implies that [21] the value of the pair index does not fluctuate in the sense that it
takes an integer given by its mean for almost every random potentials. But the value of the
integer may depend on the period �P.

As in [10, 11], the relation between the pair index, Index(PF,U
ε
aPF(U

ε
a )

∗), and the Fred-
holm index, Index(PFU

ε
aPF), of the operator PFU

ε
aPF in range of PF is given by

Index(PFU
ε
aPF)= −Index(PF,U

ε
aPF(U

ε
a )

∗). (9.14)

Consider another unitary operator,

Ua := x + iy − (a1 + ia2)

|x + iy − (a1 + ia2)| . (9.15)

Clearly, one has PFUaPF = PFU
ε
aPF + PF(Ua − Uε

a )PF. Since the operator of the second
term is compact, stability theory9 of the Fredholm indices implies that PFUaPF becomes a
Fredholm operator, too, and that the index is invariant under the compact perturbation. Thus
we have

Index(PFUaPF)= Index(PFU
ε
aPF)= −Index(PF,U

ε
aPF(U

ε
a )

∗). (9.16)

In consequence, the pair index does not depend on the parameters ε1, ε2.
Following [23], we obtain the expression (9.26) below with (9.27) for the pair index. The

expression leads to the well-known Hall conductance formula [20] which is written in terms
of the position operator of the electron.

To begin with, we note that

Tr(PF −Uε
aPF(U

ε
a )

∗)3

=
∑

u,v,w

Trχε(u)(PF −Uε
aPF(U

ε
a )

∗)χε(v)(PF −Uε
aPF(U

ε
a )

∗)χε(w)

× (PF −Uε
aPF(U

ε
a )

∗)χε(u)

=
∑

u,v,w

tu,vtv,wtw,u Trχε(u)PFχε(v)PFχε(w)PFχε(u). (9.17)

Since the index is independent of the location a of the flux [10, 11], one has

Index(PFUaPF)

= − 1

V�

∑

a∈Λ�

∑

u,v,w

tu,vtv,wtw,u Trχε(u)PFχε(v)PFχε(w)PFχε(u), (9.18)

where Λ� = ε1{−�,−� + 1, . . . , �} × ε2{−�′,−�′ + 1, . . . , �′} ⊂ Z2
ε , and V� = (2� + 1) ×

(2�′ + 1). We choose �′ so that the ratio �′/� is finite.

9See, for example, the book [44].
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Lemma 9.2 There exists a sequence {�n}n such that for almost every ω, the index is written

Index(PFUaPF)= − lim
�n↑∞

1

V�n

∑

u∈Λ∗
�n

∑

v,w

∑

a∈Z2
ε

tu,vtv,wtw,uSu,v,w,u (9.19)

with

Su,v,w,u := Trχε(u)PFχε(v)PFχε(w)PFχε(u), (9.20)

where the lattice Λ∗
� is given by

Λ∗
� = ε1{−�+ 1/2,−�+ 3/2, . . . , �− 1/2}

× ε2{−�′ + 1/2,−�′ + 3/2, . . . , �′ − 1/2}. (9.21)

The proof is given in Appendix G. Using Connes’ area formula [45],

∑

a∈Z2
ε

tu,vtv,wtw,u = 2πi

ε1ε2
(v − u)× (w − u), (9.22)

the index of (9.19) is written

Index(PFUaPF)

= − lim
|Ω|↑∞

2πi

|Ω|
∑

u∈Λ∗
�n

∑

v,w

(v − u)× (w − u)Trχε(u)PFχε(v)PFχε(w)PFχε(u), (9.23)

where Ω is the L1 ×L2 rectangular box centered at r = 0 with the sidelengths L1 = 2�nε1

and L2 = 2�′
nε2. Note that

(v − u)× (w − u) = (v − w)× (w − u)

= (v2 −w2)(w1 − u1)− (v1 −w1)(w2 − u2). (9.24)

Further we have

(v2 −w2)(w1 − u1)Trχε(u)PFχε(v)PFχε(w)PFχε(u)

= Trχε(u)PFχε(v)[Xε
2,PF]χε(w)[Xε

1,PF]χε(u), (9.25)

where the two-component function (Xε
1,X

ε
2) of r = (x, y) is given by (Xε

1,X
ε
2) = (u1, u2)

for r in the ε1 × ε2 rectangular box sε(u) centered at u = (u1, u2). From these observations,
the index is written

Index(PFUaPF)= lim|Ω|↑∞Iε(PF;Ω,�P ) (9.26)

for almost every ω, where we have written

Iε(PF;Ω,�P )= 2πi

|Ω| TrχΩPF[[PF,X
ε
1], [PF,X

ε
2]]χΩ. (9.27)

From the proof of Lemma 9.2, we obtain

E[|Index(PFUaPF)− Iε(PF;Ω,�P )|] → 0 as |Ω| ↑ ∞. (9.28)
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We also write

I(PF;Ω,�P ) := 2πi

|Ω| TrχΩPF[[PF,X1], [PF,X2]]χΩ, (9.29)

where (X1,X2) = (x, y). This right-hand side is nothing but the well-known form of the
Hall conductance formula [20].

Lemma 9.3 The following bound is valid:

E[|I(PF;Ω,�P )− Iε(PF;Ω,�P )|] ≤ Const × |ε|, (9.30)

where |ε| =
√
ε2

1 + ε2
2 , and the positive constant in the right-hand side is independent of Ω

and �P .

Proof Note that

|TrχΩPF[PF,X1][PF,X2]χΩ − TrχΩPF[PF,X
ε
1][PF,X

ε
2]χΩ |

≤ |TrχΩPF[PF, (X1 −Xε
1)][PF,X2]χΩ |

+ |TrχΩPF[PF,X
ε
1][PF, (X2 −Xε

2)]χΩ |, (9.31)

[PF,X2] = [PF, (y − yb)] + [PF, y
b],

(9.32)
[PF,X

ε
1] = [PF, (X

ε
1 − xb)] + [PF, x

b].
Therefore we can prove the statement of the theorem in the same way as in the proof of
Lemma 8.3. �

Since we can apply Borel-Cantelli theorem as in the proof of Theorem 8.5 to this re-
sult, Lemma 9.3 yields that there exists a sequence {εn = (ε1,n, ε2,n)}n of ε = εn satisfying
εj,n → 0 as n→ ∞, for j = 1,2, such that

|I(PF;Ω,�P )− Iεn (PF;Ω,�P )| → 0 as n→ ∞ (9.33)

almost surely for any fixed large Ω .
Let {δn}∞

n=1 be a sequence of positive numbers δn satisfying δn → 0 as n → ∞, and
let {pn}∞

n=1 be a sequence of positive numbers pn < 1 satisfying
∑

n pn < ∞. Relying on
Lemma 9.3, we choose ε = εn = (ε1,n, ε2,n) for each n so that

Prob[|I(PF;Ω,�P )− Iεn (PF;Ω,�P )|> δn/2] ≤ pn. (9.34)

Further, for this ε = εn, we can choose a sufficiently large Ω =Ωn so that

Prob[|Index(PFUaPF)− Iεn (PF;Ωn,�P )|> δn/2] ≤ pn, (9.35)

from the proof of Lemma 9.2. The application of Borel-Cantelli theorem yields that for
almost every ω, there exists a number n0(ω) such that for all n ≥ n0(ω), the following two
inequalities are valid:

|I(PF;Ωn,�P )− Iεn (PF;Ωn,�P )| ≤ δn/2 (9.36)



Widths of the Hall Conductance Plateaus 877

and

|Index(PFUaPF)− Iεn (PF;Ωn,�P )| ≤ δn/2. (9.37)

These two inequalities imply

|Index(PFUaPF)− I(PF;Ωn,�P )|
≤ |Index(PFUaPF)− Iεn (PF;Ωn,�P )| + |Iεn (PF;Ωn,�P )− I(PF;Ωn,�P )|
≤ δn/2 + δn/2 = δn. (9.38)

This result is summarized as the following index theorem:

Theorem 9.4 For a fixed period �P and for almost every ω, there exists a sequence {Ωn}n
of the regions Ω =Ωn going to R2 as n→ ∞ such that

Index(PFUaPF)= lim
Ωn↑R2

2πi

|Ωn| TrχΩnPF[[PF,X1], [PF,X2]]χΩn. (9.39)

For taking the infinite-volume limit Λ ↑ R2, we want to take a sequence {Λn}n of the
finite region Λ = Λn of the present system so that the condition (8.4) is satisfied for Λ =
Λn ⊃Ω =Ωn. Then we must take the limit �P ↑ ∞ together with the limit Ωn ↑ R2 so that
the unit cell of the lattice �PL2 includes the region Λ = Λn of the present system. In the
following, we consider a sequence {Λn,Ωn, �P,n}n which satisfies this requirement.

Since both of the key bounds in the proofs of Lemmas 9.2 and 9.3 do not depend on the
period �P, we can take the limit �P ↑ ∞ together with the limit Ωn ↑ R2 in the above argu-
ment for Theorem 9.4 so that the above requirement is satisfied. But both of Index(PFUaPF)

and I(PF;Ωn,�P ) may go to infinity as �P ↑ ∞. First let us prove that this case does not oc-
cur. From the argument of the proof of Lemma 8.3, one can easily show that the expectation
value E[|I(PF;Ω,�P )|] is bounded uniformly in Ω and �P. Combining this with Fatou’s
lemma, we have

E
[

lim inf
Ω↑R2,�P↑∞

|I(PF;Ω,�P )|
]

≤ lim inf
Ω↑R2,�P↑∞

E[|I(PF;Ω,�P )|]<∞. (9.40)

This implies that for almost every ω, there exists a sequence {Ωn(ω), �P,n(ω)}n of the
pair {Ω,�P} such that {Ωn(ω)} is a subsequence of the sequence {Ωn} of Theorem 9.4,
and that limn↑∞ I(PF;Ωn(ω), �P,n(ω)) exists. Here we should stress that the sequence
{Ωn(ω), �P,n(ω)}n may depend on the random event ω. On the other hand, the inequality
(9.38) holds for a large pair {Ω,�P } = {Ωn(ω), �P,n(ω)}. These observations imply that for
a fixed ω, the index Index(PFUaPF) converges to an integer as n ↑ ∞, too. But, since the
index does not depend on ω as mentioned above, we can write {�P,n}n for the sequence
{�P,n(ω)}n by dropping the ω dependence, and obtain the result that the following limit ex-
ists and is constant for almost every ω:

Index∞(PFUaPF) := lim
�P,n↑∞

Index(PFUaPF). (9.41)

Newly we choose {Ω,�P } = {Ωn,�P,n} in the inequality (9.38). Then, since the index
converges to the integer as n ↑ ∞, we obtain
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Theorem 9.5 For almost every ω, there exists a sequence {Ωn,�P,n}n of the pair {Ω =Ωn,

�P = �P,n} such that the following relation holds:

Index∞(PFUaPF)= lim
Ωn↑R2,�P,n↑∞

2πi

|Ωn| TrχΩnPF[[PF,X1], [PF,X2]]χΩn. (9.42)

Theorem 9.6 There exists a subsequence {Ωn,�P,n}n of the sequence of the preceding The-
orem 9.5 such that

Index∞(PFUaPF) = lim
Ωn↑R2,�P,n↑∞

2πi

|Ωn| TrχΩnPF[[PF,X1], [PF,X2]]χΩn

= lim
Ωn↑R2

2πi

|Ωn| TrχΩnPF,Λn [[PF,Λn , x], [PF,Λn , y]]χΩn (9.43)

with probability one. Here we take Λ = Λn and �P = �P,n so that the region Λ= Λn of the
present system satisfies the condition (8.4) for each Ω =Ωn, and the unit cell of the lattice
�P,nL2 includes the region Λn.

Theorem 9.6 follows from the following lemma:

Lemma 9.7 Under the same assumption as in Theorem 9.6, we have

E[|I(PF;Ωn,�P,n)− I(PF,Λn ;Ωn)|] → 0 as n→ ∞. (9.44)

The proof is given in Appendix H.

Theorem 9.8 There exists a sequence {Ln}n of the system sizes L = Ln such that the Hall
conductance σxy in the infinite volume limit exists and is quantized to an integer as

σxy = e2

h
Index∞(PFUaPF) (9.45)

for almost every ω.

Proof From Theorems 9.5 and 9.6, there exists a sequence of {Λn,Ωn, �P,n}n of the triplet
{Λ,Ω,�P} such that the following three conditions are satisfied: (i) the condition (8.4) is
satisfied for Λ = Λn ⊃ Ω = Ωn, (ii) the unit cell with the period �P,n includes the region
Λ=Λn of the system with the linear size L= L′

n, and (iii) for almost every ω, the following
formula holds:

Index∞(PFUaPF)= lim
n↑∞

2πi

|Ωn| TrχΩnPF,Λn [[PF,Λn , x], [PF,Λn , y]]χΩn. (9.46)

Take a subsequence {Ln}n of {L′
n}n so that the sequence {Ln}n of the system sizes satisfies

the two conditions of (8.34) in the proof of Lemma 8.5. Then, for almost every ω, the
contribution σ out

xy of the Hall conductance from the boundary region is vanishing as n ↑ ∞,
and the correction of the Hall conductance σ in

xy of (8.15) for the bulk region is also vanishing
in this limit. Combining this with (8.15) yields the desired result. �
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10 Constancy of the Hall Conductance—Homotopy Argument

In this section, we prove that the Hall conductance σxy is constant as long as both the
strengths of the potentials and the Fermi energy vary in the localization regime.

10.1 Changing the Strengths of the Potentials

Consider first changing the strengths of the potentials V LP
0 ,ALP,Vω in the Hamiltonian H LP

ω

of (9.13) on the whole plane R2. In order to prove constancy of the Hall conductance, we
extend the homotopy argument of [22] for lattice models to continuous models by relying
on the fractional moment bound [32] for the resolvent. As a byproduct, we prove that the
quantized value of the Hall conductance is independent of the period �P of the potentials
V LP

0 ,ALP. See Theorem 10.1 below.
Since all the cases can be handled in the same way, we consider only the case where the

strength of the vector potential AP varies. We denote by P ′
F the Fermi sea projection for the

Hamiltonian H ′
ω with the vector potential A′

P = AP + δAP with a small change ‖|δAP|‖∞.
Since the index does not depend on ω, we have

|Index(P ′
FUaP

′
F)− Index(PFUaPF)|

= E[|Index(P ′
FUaP

′
F)− Index(PFUaPF)|]

≤ E[|Index(P ′
FUaP

′
F)− Iε(P ′

F;Ω,�P )|] + E[|Iε(P ′
F;Ω,�P )− Iε(PF;Ω,�P )|]

+ E[|Iε(PF;Ω,�P )− Index(PFUaPF)|]. (10.1)

From (9.28), the first and the third terms in the right-hand side become small for a large Ω .
Therefore it is sufficient to show that the second term become small for a small change
‖|δAP|‖∞ of the vector potential.

Relying on the expression given by the right-hand side of (9.23), let us estimate the
difference,

Trχε(u)P ′
Fχε(v)P

′
Fχε(w)P

′
Fχε(u)− Trχε(u)PFχε(v)PFχε(w)PFχε(u)

= Trχε(u)�PFχε(v)P ′
Fχε(w)P

′
Fχε(u)+ Trχε(u)PFχε(v)�PFχε(w)P ′

Fχε(u)

+ Trχε(u)PFχε(v)PFχε(w)�PFχε(u), (10.2)

where �PF = P ′
F − PF. The first term in the right-hand side is estimated as

|Trχε(u)�PFχε(v)P ′
Fχε(w)P

′
Fχε(u)|

≤
√

Trχε(u)�PFχε(v)P ′
Fχε(v)�PFχε(u)

√
Trχε(u)P ′

Fχε(w)P
′
Fχε(w)P

′
Fχε(u)

≤ Const × ‖χε(u)�PFχε(v)‖‖χε(u)P ′
Fχε(w)‖ (10.3)

by using Schwarz’s inequality and the bound (8.27). Similarly, the second term is estimated
as

|Trχε(u)PFχε(v)�PFχε(w)P ′
Fχε(u)|

≤ √
Trχε(u)PFχε(u)

√
Trχε(u)P ′

Fχε(w)�PFχε(v)PFχε(v)�PFχε(w)P ′
Fχε(u)

≤ Const × ‖χε(u)P ′
Fχε(w)�PFχε(v)‖

≤ Const × ‖χε(u)P ′
Fχε(w)‖‖χε(w)�PFχε(v)‖. (10.4)



880 T. Koma

The third term can be handled in the same way as for the first term.
The contour representation of the Fermi sea projection yields

‖χε(u)[P ′
F − PF]χε(v)‖ ≤ I (1)u,v + I (2)u,v + I (+)

u,v + I (−)
u,v (10.5)

with

I (1)u,v = 1

2π

∫ y+

y−
dy‖χε(u)[R′(EF + iy)−R(EF + iy)]χε(v)‖, (10.6)

I (2)u,v = 1

2π

∫ y+

y−
dy‖χε(u)[R′(E0 + iy)−R(E0 + iy)]χε(v)‖ (10.7)

and

I (±)
u,v = 1

2π

∫ EF

E0

dE‖χε(u)[R′(E + iy±)−R(E + iy±)]χε(v)‖, (10.8)

where R′(z)= (z−H ′
ω)

−1 and R(z)= (z−Hω)
−1.

First let us estimate the last three integrals except for I (1)u,v . Note that R′(z) − R(z) =
−R′(z)δHωR(z), where

δHω = e

2me

[δA · (p + eA)+ (p + eA) · δA] + e2

2me

|δA|2. (10.9)

Since all the contributions in the perturbation δHω can be handled in the same way, we
consider only

χε(u)R′(z)δAs(ps + eAs)R(z)χε(v)

=
∑

u′
χε(u)R′(z)χ̃b(u′)δAs(ps + eAs)χ

δ
b (u

′)R(z)χε(v) (10.10)

as a typical one. Here {χδ
b (u)}u is the partition of unity which is given in the proof of

Lemma H.1 in Appendix H, and χ̃b(u) is the characteristic function of the support of χδ
b (u).

The norm is estimated as

‖χε(u)R′(z)δAs(ps + eAs)R(z)χε(v)‖
≤ ‖δAs‖∞

∑

u′
‖χε(u)R′(z)χ̃b(u′)‖‖(ps + eAs)χ

δ
b (u

′)R(z)χε(v)‖

≤ Const × ‖δAs‖∞
∑

u′
‖χε(u)R′(z)χ̃b(u′)‖

× [‖χ̃b(u′)R(z)χε(v)‖ + Const × ‖χ̃b(u′)R(z)χε(v)‖1/2], (10.11)

where we have used Lemma H.1 for getting the second inequality. Since dist(σ (Hω), z) > 0
in the present situation, all the norms about the resolvent R(z) decay exponentially at the
large distance. Therefore we obtain

I (�)u,v ≤ Const × ‖|δAP|‖∞ exp[−μ′|u − v|] (10.12)
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with a positive constant μ′, where � = 2,±. Consider the contribution from (10.3) because
the rest can be treated in the same way. The corresponding contribution is estimated by

‖|δAP|‖∞
|Ω|

∑

u∈Λ∗
�

∑

v,w

|u − v||u − w|e−μ′|u−v|E[‖χε(u)P ′
Fχε(w)‖]

≤ Const × ‖|δAP|‖∞, (10.13)

where we have used the decay bound (7.17) for the Fermi sea projection.
Let s ∈ (0,1/3). The rest of the integrals is written

I (1)u,v = 1

2π

∫ y+

y−
dy‖χε(u)[R′(EF + iy)−R(EF + iy)]χε(v)‖s/3

× ‖χε(u)[R′(EF + iy)−R(EF + iy)]χε(v)‖1−s/3

≤ 1

π

∫ y+

y−
dy‖χε(u)[R′(EF + iy)−R(EF + iy)]χε(v)‖s/3|y|s/3−1, (10.14)

where we have used the inequality (
∑

j aj )
s ≤ ∑

j a
s
j for s ∈ (0,1) and aj ≥ 0, and the

inequality ‖R�(EF + iy)‖ ≤ |y|−1 for R� = R′,R. For the norm of the operator in the inte-
grand, the contribution from the term (10.10) can be estimated as

‖χε(u)R′(EF + iy)δAs(ps + eAs)R(EF + iy)χε(v)‖s/3

≤ Const × ‖δAs‖∞
∑

u′
{‖χε(u)R′(EF + iy)χ̃b(u′)‖s/3‖χ̃b(u′)R(EF + iy)χε(v)‖s/3

+ Const × ‖χε(u)R′(EF + iy)χ̃b(u′)‖s/3‖χ̃b(u′)R(EF + iy)χε(v)‖s/6}, (10.15)

where we have used Lemma H.1 for getting the inequality.
Consider the contribution from the first term in the summand in the right-hand side of

(10.15) because the second term can be handled in the same way. The corresponding contri-
bution from (10.3) is estimated by

‖|δAP|‖∞
|Ω|

∑

u∈Λ∗
�

∑

v,w

∑

u′
|u − v||u − w|E

∫ y+

y−
dy|y|s/3−1

× ‖χε(u)R′(EF + iy)χ̃b(u′)‖s/3‖χ̃b(u′)R(EF + iy)χε(v)‖s/3

× ‖χε(u)P ′
Fχε(w)‖. (10.16)

Using Hölder’s inequality, we have

E[‖χε(u)R′(EF + iy)χ̃b(u′)‖s/3‖χ̃b(u′)R(EF + iy)χε(v)‖s/3‖χε(u)P ′
Fχε(w)‖]

≤ {E[‖χε(u)R′(EF + iy)χ̃b(u′)‖s]}1/3{E[‖χ̃b(u′)R(EF + iy)χε(v)‖s]}1/3

× {E[‖χε(u)P ′
Fχε(w)‖3]}1/3

≤ Const × e−μ|u−u′|/3e−μ|u′−v|/3e−μ|u−w|/3, (10.17)

where we have used the decay bounds (7.1), (7.17) and ‖χε(u)P ′
Fχε(w)‖ ≤ 1. Relying on

Fatou’s lemma and Fubini-Tonelli theorem, and substituting the bound (10.17) into (10.16),
we can obtain the desired result.
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Thus the index is constant as long as the strengths of the potentials vary in the localization
regime. In order to describe our statement more precisely, we recall the definitions of the
lower and upper localization regimes which are given by the intervals (5.36) and (5.37),
respectively, in the case of AP = 0. In the case of AP �= 0, the corresponding condition is
given by (5.47). See also Sect. 11. We continuously change the strength of all the potentials,
V0,Vω and AP, starting from the special point, ‖V0‖∞ = ‖Vω‖∞ = 0 and ‖|AP|‖∞ = 0,
for a fixed Fermi energy EF. Then, if the Fermi energy EF is staying the lower or upper
localization regime, the index is equal to the special case that all the potentials are vanishing.
This result also implies that the index does not depend on the period �P of the potentials. In
consequence, Theorem 9.8 is refined as

Theorem 10.1 Suppose that the Fermi energy EF lies in the localization regime around
the n-th Landau energy En−1 = (n− 1/2)�ωc . There exists a sequence {Lx,n,Ly,n}n of the
system sizes such that the Hall conductance σxy in the infinite volume limit exists and is
quantized to an integer as

σxy = −e2

h
×

{
n for the upper localization regime,

n− 1 for the lower localization regime
(10.18)

with probability one.

Remark

1. When the strength of one of the potentials becomes sufficiently large for a fixed strength
of the magnetic field, the localization regimes become empty in our definition. Thus we
need the condition that the strengths of the potentials are weak, compared to the strength
of the magnetic field.

2. The number of the states in a localization regime will be proved to be of bulk order for
the weak potentials, compared to the strength of the magnetic field in Sect. 11.

3. We do not require any assumption on the tails λ ∈ [λmin,−λ−] ∪ [λ+, λmax] of the cou-
pling constant of the random potential Vω . Therefore we allow the possibility that the
spectral gap between two neighboring disordered-broadened Landau bands vanishes ow-
ing to the tails of the random potential.

10.2 Changing the Fermi Level

Next let us prove the constancy of the Hall conductance for changing the Fermi level EF.
The Hall conductance σxy of (8.2) is written

σxy = − i�e2

LxLy

∑

m,n:Em<EF<En

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]
(10.19)

in terms of the eigenvector ϕn of the single electron Hamiltonian Hω with the eigenvalue
En, n = 1,2, . . . , on the box Λsys. We take the energy eigenvalues En in increasing order,
repeated according to multiplicity.

Consider changing the number of the electrons below the Fermi level from N to N ′ in
the localization regime. Without loss of generality, we can assume N ′ > N . We denote by
EF and E′

F the corresponding two Fermi energies for N and N ′ electrons, respectively. The
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sum in the right-hand side of (10.19) for N ′ electrons is written as

∑

m,n:Em<E′
F
<En

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]

=
∑

m≤N

∞∑

n=N ′+1

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]

+
N ′∑

m=N+1

∞∑

n=N ′+1

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]

=
∑

m≤N

∞∑

n=N+1

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]

−
∑

m≤N

N ′∑

n=N+1

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]

+
N ′∑

m=N+1

∞∑

n=N ′+1

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]
. (10.20)

The first double sum in the right-hand side of the second equality leads the Hall conductance
σxy for N electrons. Therefore it is sufficient to estimate the other two double sums. These
two sums are compactly written as

N ′∑

m=N+1

∑

n≤N andn>N ′

[
(ϕm, vxϕn)(ϕn, vyϕm)

(Em −En)2
− (x ↔ y)

]
. (10.21)

In consequence, the difference between the two Hall conductances for N and N ′ electrons
is written

�σ loc
xy = − i�e2

LxLy

Tr�P loc
Λ [Px,Λ,Py,Λ]�P loc

Λ , (10.22)

where �P loc
Λ is the spectral projection onto the localization regime, and

Ps,Λ = 1

2πi

∫

γ

dzRΛ(z)vsRΛ(z), (10.23)

with the resolvent RΛ(z) = (z − Hω,Λ)
−1 for the present Hamiltonian Hω,Λ on the box

Λ=Λsys. Here the closed path γ encircles the energy eigenvalues of the “localized” states.
In the same way as in Lemma 8.2 and (8.32), we have

�σ loc
xy = e2

h
I loc(�P loc

Λ )+ δ(L)+O(exp[−μ′L2κ/3]) (10.24)

with probability larger than (1 − Const ×L−2[κ(ξ+2)−3]/3), where

I loc(�P loc
Λ )= 2πi

|Ω| TrχΩ�P
loc
Λ [[�P loc

Λ ,x], [�P loc
Λ ,y]]χΩ, (10.25)
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and δ(L) is the correction which comes from the boundary region Λ\Ω . In the same way
as in the proof of Lemma 8.5, we can show that E[δ(L)] → 0 as L→ ∞.

Lemma 10.2 The following bound is valid:

E|I loc(�P loc
Λ )| ≤ Const ×�E1/2, (10.26)

where �E =E′
F −EF.

Proof Using Schwarz’s inequality, one has

E|I loc(�P loc
Λ )| ≤ 2π

|Ω|
√

E[TrχΩ�P loc
Λ χΩ ] · E[TrχΩA∗�P loc

Λ AχΩ ], (10.27)

where we have written A= [[�P loc
Λ ,x], [�P loc

Λ ,y]]. From the Wegner estimate (A.38), one
has

1

|Ω|E[TrχΩ�P
loc
Λ χΩ ] ≤ 1

|Ω|E[TrχΛ�P
loc
Λ χΛ] ≤ Const ×�E. (10.28)

Therefore it is sufficient to show that the quantity |Ω|−1E[TrχΩA∗�P loc
Λ AχΩ ] is bounded.

Schwarz’s inequality yields

Trχb(u)A∗�P loc
Λ Aχb(u)

=
∑

v,w

Trχb(u)A∗χb(v)�P loc
Λ χb(w)Aχb(u)

≤
∑

v,w

√
Trχb(u)A∗χb(v)�P loc

Λ χb(v)Aχb(u)×
√

Trχb(u)A∗χb(w)�P loc
Λ χb(w)Aχb(u)

≤ Const ×
∑

v,w

‖χb(v)Aχb(u)‖ · ‖χb(w)Aχb(u)‖, (10.29)

where we have used the bound (8.27) for getting the second inequality. One can show that
the expectation value of the right-hand side is finite in the same way as in the proof of
Lemma 8.3. �

We denote by M ′
Λ the event MΛ for the Fermi energy E′

F in the proof of Lemma 8.1.
Note that

E[|Index(PFUaPF)− (h/e2)σ in
xy |I(MΛ ∩M ′

Λ)]
≤ E[|Index(PFUaPF)− Iε(PF;Ω,�P )|]

+ E[|Iε(PF;Ω,�P )− I(PF;Ω,�P )|] + E[|I(PF;Ω,�P )− I(PF,Λ;Ω)|]
+ E[|I(PF,Λ;Ω)− (h/e2)σ in

xy |I(MΛ ∩M ′
Λ)]. (10.30)

From (8.15), (9.28) and Lemmas 9.3 and 9.7, all the terms in the right-hand side become
small for large |Ω|,L and for a small ε. Further, from (8.32), the proof of Lemma 8.5
and (10.24), we have
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E[|σ in
xy

′ − σ in
xy |I(MΛ ∩M ′

Λ)]
≤ E[|�σ loc

xy |I(MΛ ∩M ′
Λ)] + E[|σ out

xy

′|I(MΛ ∩M ′
Λ)] + E[|σ out

xy |I(MΛ ∩M ′
Λ)]

≤ e2

h
E|I loc(�P loc

Λ )| + (small correction). (10.31)

From these observations and the fact that the indices are constant for almost every ω, we
obtain

|Index(P ′
FUaP

′
F)− Index(PFUaPF)|E[I(MΛ ∩M ′

Λ)]
≤ E[|Index(P ′

FUaP
′
F)− Index(PFUaPF)|I(MΛ ∩M ′

Λ)]
≤ E|I loc(�P loc

Λ )| + (small correction)

≤ Const ×�E1/2 + (small correction), (10.32)

where we have used Lemma 10.2 for getting the last inequality. This implies that the index
must be constant for a small change �E of the Fermi energy in the localization regime
because the index is equal to an integer for almost every ω.

11 Widths of the Hall Conductance Plateaus

In this section, we prove that the widths of the Hall conductance plateaus are of the bulk
order under certain conditions for the potentials, by estimating the number of the localized
states. The conditions are realized for weak potentials as we will see in this section.

Consider first the case with AP = 0. To begin with, we note that, when the strength of the
random potential Vω continuously increases from λ= 0 to λ ∈ [−λ−, λ+] ⊂ [λmin, λmax], the
energies E of the n+ 1-th Landau band are broadened into the interval,

−‖V −
0 ‖∞ − λ−u1 ≤E − En ≤ ‖V +

0 ‖∞ + λ+u1. (11.1)

Let δ̂ be a small positive parameter. For the lower region of the band, we choose
λ+ = λlow+ ≤ λmax, λ− = λlow− and δ̂− = δ̂ in the condition (5.36) so that the pair (λ+, λ−) =
(λlow+ , λlow− ) satisfies the condition (2.7) with a small λ− = λlow− . Then the condition (5.36)
for the energy E leading to a localized state becomes

En−1 + ‖V +
0 ‖∞ + λlow

+ u1 + δ̂�ωc ≤E ≤ En − ‖V −
0 ‖∞ − λlow

− u1 −�E . (11.2)

We call this interval the lower localization regime. For the upper region of the band, we
choose λ+ = λ

up
+ , λ− = λ

up
− ≥ −λmin and δ̂+ = δ̂/2 in the condition (5.37) so that the pair

(λ+, λ−) = (λ
up
+ , λ

up
− ) satisfies the condition (2.7) with a small λ+ = λ

up
+ . The condition

(5.37) for localization is

En + ‖V +
0 ‖ + λ

up
+ u1 +�E ≤E ≤ En+1 − ‖V −

0 ‖∞ − λ
up
− u1 − δ̂�ωc. (11.3)

We call this interval the upper localization regime. We require that the positive constants, δ̂,
λlow+ and λ

up
− , satisfy

‖V +
0 ‖∞ + ‖V −

0 ‖∞ + (λlow
+ + λ

up
− )u1 + 2δ̂�ωc < �ωc (11.4)
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so that the lower and upper localization regimes overlap with each other. This condition is
satisfied for a large strength B of the magnetic field for fixed strengths of the potentials. We
stress that we allow the possibility that the spectral gap between two neighboring disordered-
broadened Landau bands vanishes owing to the tails λ ∈ [λmin,−λ

up
− ] ∪ [λlow+ , λmax] of the

coupling constants. In this situation, all the states in the n + 1-th broadened Landau band
are localized except for the energies E satisfying −δE− ≤ E − En ≤ δE+, where δE− =
‖V −

0 ‖∞ + λlow− u1 +�E and δE+ = ‖V +
0 ‖∞ + λ

up
+ u1 +�E . In other words, the number of

the extended states can be bounded by the number of the energy eigenvalues E satisfying
−δE− ≤E − En ≤ δE+.

In order to obtain the upper bound for the number of the extended states, consider first
the special case with V0 = 0 in the Hamiltonian H0 of (2.2). Namely, the Hamiltonian H0 is
equal to the simplest Landau Hamiltonian HL of (3.1), combining with the present assump-
tion AP = 0. In this case, the number of the extended states can be estimated with probability
nearly equal to one for the sufficiently large volume10 by using the Wegner estimate (A.38).
When V0 �= 0, the deviation of the energy eigenvalues is bounded from above by ‖V +

0 ‖∞
and from below by −‖V −

0 ‖∞. From these observations and the min-max principle, we can
estimate the number Next of the extended states which appear only near the center of the
band as

Next ≤ C
(0)
W K

(0)
3 ‖g‖∞(δE+ + δE− + ‖V +

0 ‖∞ + ‖V −
0 ‖∞)|Λ| (11.5)

in the case with V0 �= 0, where C
(0)
W and K

(0)
3 are the positive constants for the case of

V0 = 0. Since the total number of the states in the n+ 1-th Landau band is given by M =
|Λ|eB/(2π�), the number Nloc of the localized states in the band is evaluated as

Nloc =M −Next ≥ B|Λ|
(

e

2π�
−C

(0)
W

K
(0)
3

B
‖g‖∞δE

)
(11.6)

with δE = 2(‖V +
0 ‖∞ + ‖V −

0 ‖∞) + (λlow− + λ
up
+ )u1 + 2�E . We note that K(0)

3 /B ∼ Const
for a large B from the remark below Theorem A.2. Thus, if the strength of the potential
V0 is sufficiently weak, we can choose the parameters λlow− , λ

up
+ ,�E so that the right-hand

side (11.6) is strictly positive for any large magnetic field. This implies that the number Nloc

is of order of the bulk. In order to discuss the case for a strong random potential which
behaves like ‖u‖∞ ∼ B for a strong magnetic field, we recall u1 = 2‖u‖∞. We also have
K

(0)
3 = O(1) which was already obtained at the end of Sect. 5. From these and the same

argument, we can also get the lower bound for the number of the localized states, i.e., the
width of the Hall conductance.

Let us see that the above estimate for the widths of the plateaus gives the optimal value
in the limit B ↑ ∞ for V0 = 0. From the above bounds, we have

Next

M
≤ Const × [(λlow

− + λ
up
+ )u1 + 2�E]. (11.7)

From the argument about the initial decay estimate for the resolvent in Sect. 5, we can take
the three parameters, λlow− , λ

up
+ ,�E , so as to go to zero in the strong magnetic field limit

B ↑ ∞. Thus the density of the extended states in the Landau level is vanishing in the limit.
Next consider the case with AP �= 0. The method to show the existence of the Hall con-

ductance plateau with the width of bulk order is basically the same as in the above case with

10See, for example, Chap. VI of the book [31].
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AP = 0, except for considering strong potentials. We assume that the bump u of the random
potential Vω is written u = �ωcû with a fixed, dimensionless function û, and that the vec-
tor potential AP satisfies ‖|AP|‖∞ ≤ α0B

1/2 with a small, positive constant α0. Instead of
the condition (11.4), we require that the corresponding positive constants, δ̂, λlow+ and λ

up
− ,

satisfy

‖V +
0 ‖∞ + ‖V −

0 ‖∞ + (λlow
+ + λ

up
− )u1 + δ̂�ωc

+
√

2e√
me

‖|AP|‖∞(
√
En + √

En+1)+ e2

2me

‖|AP|‖2
∞ < �ωc. (11.8)

Similarly, for the lower localization regime, we choose λ+ = λlow+ ≤ λmax, λ− = λlow− and
δ̂+ = δ̂− = δ̂/2 in the condition (5.47) so that the pair (λ+, λ−) = (λlow+ , λlow− ) satisfies the
condition (2.7) with a small λ− = λlow− . Then all the states in the n+ 1-th broadened Landau
band with the energies E ≤ En − δE− are localized, where

δE− = ‖V −
0 ‖∞ + λlow

− u1 + 1

2
δ̂�ωc +

√
2e√
me

‖|AP|‖∞
√
En. (11.9)

For the upper localization regime, we choose λ+ = λ
up
+ , λ− = λ

up
− ≥ −λmin and δ̂+ = δ̂− =

δ̂/2 in the same condition (5.47) so that the pair (λ+, λ−)= (λ
up
+ , λ

up
− ) satisfies the condition

(2.7) with a small λ+ = λ
up
+ . Then all the states in the n+ 1-th broadened Landau band with

the energies E ≥ En + δE+ are localized, where

δE+ = ‖V +
0 ‖∞ + λ

up
+ u1 + 1

2
δ̂�ωc +

√
2e√
me

‖|AP|‖∞
√
En + e2

2me

‖|AP|‖2
∞. (11.10)

The corresponding δE in (11.6) is given by

δE = 2(‖V +
0 ‖∞ + ‖V −

0 ‖∞)+ (λ
up
+ + λlow

− )u1 + δ̂�ωc

+ 4
√

2e√
me

‖|AP|‖∞
√
En + e2

me

‖|AP|‖2
∞. (11.11)

Consequently there appears the Hall conductance plateau with the width of the bulk order
for a fixed potential V0, for a strong magnetic field, and for small parameters, λup

+ , λlow− , δ̂, α0.

12 Corrections to the Linear Response Formula

The aim of this section is to prove that both of the acceleration coefficients γuy , u = x, y,
in the linear response formula (8.1) are vanishing in the infinite volume limit, and that the
corrections δσuy(t), u = x, y, due to the initial adiabatic process in (8.1) satisfy the bound
(2.27).

We recall the expression of the acceleration coefficients [8],

γuy = e2

LxLy

[
N

me

δu,y + Trvu(Py,ΛPF,Λ + PF,ΛPy,Λ)

]
for u= x, y. (12.1)
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Using the partition of unity, {χb(u)}u, which was introduced in Sect. 8, we have

Trvu(Py,ΛPF,Λ + PF,ΛPy,Λ)=
∑

u

[TrvuPy,Λχb(u)PF,Λ + TrvuPF,Λχb(u)Py,Λ]. (12.2)

First let us consider the first term TrvuPy,Λχb(u)PF,Λ in the summand in the right-hand
side. Since we can shift the location of the box sb(u) by using the magnetic translations, we
can assume dist(u, ∂Λ)= O(L). Write RΛ(z)= (z−Hω,Λ)

−1. Note that

TrvuPy,Λχb(u)PF,Λ = 1

2πi

∫

γ

dzTrvuRΛ(z)vyRΛ(z)χb(u)PF,Λ

= 1

2πi

∫

γ

dzTrvuRΛ(z)vyχ
δ
ΛRΛ(z)χb(u)PF,Λ

+ 1

2πi

∫

γ

dzTrvuRΛ(z)vy(1 − χδ
Λ)RΛ(z)χb(u)PF,Λ, (12.3)

where χδ
Λ is the C2, positive cutoff function which was also introduced in Sect. 8. By the

same argument as in the proof of Lemma 8.2, the absolute value of the second term in the
right-hand side has a stretched exponentially decaying bound as in Lemma 8.1. Since the
number of u for the summation in the right-hand side of (12.2) is of order of the volume
LxLy = O(L2), the corresponding contribution is vanishing in the infinite volume limit
L ↑ ∞. Using the identity, vyχδ

Λ = (i/�)[y, z−Hω,Λ]χδ
Λ, one has

1

2πi

∫

γ

dzRΛ(z)vyχ
δ
ΛRΛ(z)χb(u)

= i

�
[PF,Λ, yχ

δ
Λ]χb(u)− 1

2π�

∫

γ

dzRΛ(z)yW(χδ
Λ)RΛ(z)χb(u) (12.4)

for the first term in the right-hand side of (12.3). This second term in the right-hand side also
gives a small correction. In consequence, only the first term in the right-hand side of (12.4)
may lead to a nonvanishing contribution in the infinite-volume limit.

Since the second term in the summand in the right-hand side of (12.2) can handled in the
same way, we get

Tr[vuPy,Λχb(u)PF,Λ + vuPF,Λχb(u)Py,Λ]

= i

�
Tr{vu[PF,Λ, yχ

δ
Λ]χb(u)PF,Λ + vuPF,Λχb(u)[PF,Λ, yχ

δ
Λ]} + corrections

= i

�
Tr{−vuyχ

δ
ΛPF,Λχb(u)PF,Λ + vuPF,Λχb(u)PF,Λyχ

δ
Λ} + corrections

= − 1

me

δu,y TrPF,Λχb(u)PF,Λ + corrections, (12.5)

where we have used vuy = −(i�/me)δu,y + yvu for getting the last equality. Substituting
this and (12.2) into the expression (12.1) of γuy , we obtain

lim
Λsys↑R2

γuy = 0 for u= x, y with probability one. (12.6)
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Next consider the corrections δσuy(t) due to the initial adiabatic process in (8.1). We
begin with recalling the expression [8],

δσuy(t)= ie2

LxLy

〈Φ(N)

0,Λ, v
(N)
u [1 − P

(N)

0,Λ ]Mt (E
(N)

0,Λ −H
(N)
ω,Λ)v

(N)
y Φ

(N)

0,Λ〉 + c.c., (12.7)

with

Mt (E)=
{[

iT

E + i�η
− �

(E + i�η)2

]
e−ηT eiET/� +

[
�

E2
− �

(E + i�η)2

]}
eiEt/�, (12.8)

where Φ(N)

0,Λ is the N electron ground state vector with the energy eigenvalue E(N)

0,Λ , v(N)
u the

N electron velocity operator, and P
(N)

0,Λ the projection onto the N electron ground state.
Since all the contributions can be handled in the same way, we consider

Nsy(t) := 1

LxLy

〈Φ(N)

0,Λ, v
(N)
u Pex

× [(E(N)

0,Λ −H
(N)
ω,Λ)

−2 − (E
(N)

0,Λ −H
(N)
ω,Λ + i�η)−2]eiθ̂ v(N)

y Φ
(N)

0,Λ〉 (12.9)

with θ̂ = (E
(N)

0,Λ −H
(N)
ω,Λ)t/� as an example. Here we have written Pex = 1 − P

(N)

0,Λ for short.

In order to eliminate the factor eiθ̂ , we use Schwarz’s inequality. As a result, we obtain
|Nuy(t)|2 ≤ Ñu(t)Ñy(t) with

Ñu(t) := 1

LxLy

〈Φ(N)

0,Λ, v
(N)
u Pex

× |[E(N)

0,Λ −H
(N)
ω,Λ]−1 + [E(N)

0 −H
(N)
ω,Λ + i�η]−1|2v(N)

u Φ
(N)

0,Λ〉 (12.10)

and

Ñy(t) := 1

LxLy

〈Φ(N)

0,Λ, v
(N)
y Pex

× |[E(N)

0,Λ −H
(N)
ω,Λ]−1 − [E(N)

0,Λ −H
(N)
ω,Λ + i�η]−1|2v(N)

y Φ
(N)

0,Λ〉. (12.11)

Further the application of the inequality
√
ab ≤ (a + b)/2 for a, b ≥ 0 yields

|Nuy(t)| ≤ [ηs/4Ñu(t)+ η−s/4Ñy(t)]/2 for s ∈ (0,1/3). (12.12)

Since the present system has no electron-electron interaction, Ñy(t) is written as

Ñy(t) = 1

LxLy

TrPF,Λ
1

2πi

∫

γ

dz
1

z−Hω,Λ

vy

[
1

z−Hω,Λ

− 1

z−Hω,Λ + i�η

]

× 1

2πi

∫

γ

dz′
[

1

z′ −Hω,Λ

− 1

z′ −Hω,Λ − i�η

]
vy

1

z′ −Hω,Λ

= 1

LxLy

∑

a

TrPF,Λ
1

2πi

∫

γ

dz
1

z−Hω,Λ

vy

[
1

z−Hω,Λ

− 1

z−Hω,Λ + i�η

]

× χb(a)
1

2πi

∫

γ

dz′
[

1

z′ −Hω,Λ

− 1

z′ −Hω,Λ − i�η

]
vy

1

z′ −Hω,Λ

. (12.13)
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Here we have introduced the partition of unity {χb(a)}. In the same way as the above, the
summand can be further written as

TrPF,Λ
1

2πi

∫

γ

dz[y, (z−Hω,Λ)
−1] η

z−Hω,Λ + i�η

× χb(a)
1

2πi

∫

γ

dz′ η

z′ −Hω,Λ − i�η
[(z′ −Hω,Λ)

−1, y] + correction. (12.14)

Here the correction vanishes almost surely in the infinite volume limit by taking a suitable
sequence {Lx,Ly} of the system sizes as in the proof of Theorem 8.5. If z of the resolvent
RΛ(z) = (z −Hω,Λ)

−1 is not near to the spectrum σ(Hω,Λ), then the resolvent is bounded
and decays exponentially at large distance. Therefore we consider only the contributions
from the paths near the Fermi energy EF in the first term in the right-hand side of (12.14).
As a typical example of the corresponding contributions, let us consider

Ia :=
∑

u,v,w,z

∫ t+

t−
dt

∫ t+

t−
dt ′ Trχb(u)PF,Λχb(v)[y,RΛ(EF + it)]χb(w)

× ηRΛ(EF + i(t + �η))χb(a)ηRΛ(EF + i(t ′ − �η))

× χb(z)[RΛ(EF + it ′), y]χb(u). (12.15)

Note that

|Trχb(u)PF,Λχb(v)A| ≤ √
Trχb(u)PF,Λχb(u)

√
TrA∗χb(v)PF,Λχb(v)A

≤ Const × ‖A‖ (12.16)

for any bounded operator A, where we have used the bound (8.27), and that

‖χb(v)[y,RΛ(z)]χb(w)‖ ≤ (Const + |v2 −w2|)‖χb(v)RΛ(z)χb(w)‖, (12.17)

where we have used the decomposition y = y − yb + yb in the proof of Lemma 8.3. From
these observations, we have

|Ia| ≤ Const ×
∑

u,v,w,z

(Const + |v2 −w2|)(Const + |z2 − u2|)

×
∫ t+

t−
dt‖χb(v)RΛ(EF + it)χb(w)‖ · η‖χb(w)RΛ(EF + i(t + �η))χb(a)‖

×
∫ t+

t−
dt ′η‖χb(a)RΛ(EF + i(t ′ − �η))

× χb(z)‖‖χb(z)RΛ(EF + it ′)χb(u)‖. (12.18)

The first integral is decomposed into two parts as

∫ t+

t−
dt · · · =

∫ −�η/2

t−
dt · · · +

∫ t+

−�η/2
dt · · · . (12.19)
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The second part of the integral is estimated as
∫ t+

−�η/2
dt‖χb(v)RΛ(EF + it)χb(w)‖ · η‖χb(w)RΛ(EF + i(t + �η))χb(a)‖

≤ Const × ηs/4
∫ t+

−�η/2
dt‖χb(v)RΛ(EF + it)χb(w)‖s/4|t |s/4−1

× ‖χb(w)RΛ(EF + i(t + �η))χb(a)‖s/4, (12.20)

where we have used the inequality ‖χb(w)RΛ(EF + i(t + �η))χb(a)‖ ≤ 2/(�η) for
t ≥ −�η/2. For the first part of the integral, we can obtain a similar bound by using
‖χb(v)RΛ(EF + it)χb(w)‖ ≤ 2/(�η) for t ≤ −�η/2. Clearly the second integral about t ′
in the right-hand side of (12.18) can be treated in the same way. Combining these observa-
tions with Hölder inequality,

E[‖χb(v)RΛ(EF + it)χb(w)‖s/4‖χb(w)RΛ(EF + i(t + �η))χb(a)‖s/4

× ‖χb(a)RΛ(EF + i(t ′ − �η))χb(z)‖s/4‖χb(z)RΛ(EF + it ′)χb(u)‖s/4]
≤ E[‖χb(v)RΛ(EF + it)χb(w)‖s]1/4E[‖χb(w)RΛ(EF + i(t + �η))χb(a)‖s]1/4

× E[‖χb(a)RΛ(EF + i(t ′ − �η))χb(z)‖s]1/4

× E[‖χb(z)RΛ(EF + it ′)χb(u)‖s]1/4, (12.21)

we obtain

E|Ia| ≤ Const × ηs/2
∑

u,v,w,z

(Const + |v2 −w2|)(Const + |z2 − u2|)

× e−μ|v−w|/4e−μ|w−a|/4e−μ|a−z|/4e−μ|z−u|/4

≤ Const × ηs/2, (12.22)

where we have used Fatou’s lemma, Fubini–Tonelli theorem and the fractional moment
bound (7.1) as in the proof of Lemma 7.1. Combining this bound, (12.13), (12.14) and
(12.15), the expectation of Ñy(t) of (12.12) is bounded by Const × ηs/2.

Since the bound,

|E−1 + (E + i�η)−1|2 ≤ 4E−2, (12.23)

holds for E ∈ R, the expectation of Ñu(t) of (12.12) can be proved to be bounded in a easier
way. As a result, we obtain that there exists a sequence {Lx,n,Ly,n}n of the system sizes such
that the bound,

lim
Lx,Ly→∞

Nuy(t)≤ Const × ηs/4, (12.24)

holds almost surely, where the positive constant may depend on ω.
Since the rest of the contributions for δσuy(t) can be handled in the same way, we obtain

the desired result that the bound,

|δσuy(t)| ≤ [C1(ω)+ C2(ω)T ]e−ηT + C3(ω)η
s/4, (12.25)

holds almost surely for s ∈ (0,1/3) and for u = x, y. Here the positive constants,
Cj (ω) < ∞, j = 1,2,3, may depend on ω. Choosing s = 4/13 < 1/3, we get the
bound (2.27).
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Appendix A: Wegner Estimate

In this appendix, we study the Wegner estimate [39] for the density of states for a single-
electron Hamiltonian in a general setting. For this purpose, we follow the argument by Bar-
baroux, Combes and Hislop [18]. However, the following argument is slightly simplified
compared to their original one because we are interested in two dimensions only.

Consider a single spinless electron system with a disorder potential Vω in d dimensions.
The Hamiltonian is given by Hω =H0 + Vω on L2(Rd) with the unperturbed Hamiltonian,

H0 = 1

2me

(p + eA)2 + V0. (A.1)

We assume A ∈ C1(Rd ,Rd) and V0 ∈ L∞(Rd), and assume that the Hamiltonian H0 is
essentially self-adjoint with a boundary condition. As a disorder potential Vω , we consider
an Anderson type potential of impurities,

Vω(r)=
∑

a∈Ld

λa(ω)u(r − a), (A.2)

for r = (x1, x2, . . . , xd) ∈ Rd . The constants {λa(ω)|a ∈ Ld} form a family of indepen-
dent, identically distributed random variables on a d-dimensional periodic lattice Ld ⊂ Rd .
The common distribution has a density g ≥ 0 which has compact support and satisfies
g ∈ L∞(R) ∩ C(R). We assume that the single-site potential u is non-negative and has
compact support. We write the sum of the single-site potentials u as

U(r) :=
∑

a∈Ld

u(r − a) for r ∈ Rd . (A.3)

We assume ‖U‖∞ < +∞. Clearly this implies ‖u‖∞ < +∞. From these assumptions, we
have ‖Vω‖∞ ≤ vR < +∞ with some positive constant vR which is independent of the ran-
dom variables.

For a bounded region Λ ⊂ Rd , we denote by Hω,Λ = H0,Λ + Vω,Λ the Hamiltonian Hω

restricted to Λ with a boundary condition. Here Vω,Λ = Vω|Λ, i.e., Vω,Λ is the restriction of
Vω to Λ. We assume

UΛ := U |Λ≥ UminχΛ, (A.4)

where Umin is a positive constant which is independent of the bounded region Λ, and χΛ is
the characteristic function for Λ. Namely there is no flat potential region satisfying u = 0.
Further we assume that

Tr(H0,Λ + Emin)
−2χΩ ≤K0|Ω|n0 (A.5)

for a finite region Ω ⊂ Λ, with a positive constant Emin > ‖V −
0 ‖∞, where Tr stands for

the trace on L2(Λ); K0 and n0 are the positive constants which are independent of the
volumes |Λ|, |Ω| of the finite regions Λ,Ω . If the vector potential A satisfies the additional
assumption A ∈ C2(Rd ,Rd), then the inequality (A.5) is valid in the dimensions d ≤ 3. See
Ref. [18] for details and also for the treatment in the case of higher dimensions d ≥ 4 in
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which they require a stronger assumption than the above assumption (A.5). Consider the
present system with the unperturbed Hamiltonian (2.2). From the inequality (3.9) for the
lower edge of the Landau band, we have

Tr(H0,Λ + Emin)
−2χΩ ≤ Const × |b|/B (A.6)

for strong magnetic field strengths B . Here we have assumed that the region Ω is contained
in a rectangular box b such that the volume |b| of the box satisfies the flux quantization
condition |b|/(2π�2

B) ∈ N. Namely

n0 = 1 and K0 ∼ Const ×B−1 for a large B. (A.7)

Let Qω,Λ(�) denote the spectral projection for Hω,Λ with an energy interval � ⊂ R.
Let ψE be an eigenvector of the Hamiltonian Hω,Λ, i.e., Hω,ΛψE = EψE with an energy
eigenvalue E ∈ R. The Schrödinger equation is written as

(H0,Λ + Emin)ψE = (−Vω,Λ +E + Emin)ψE. (A.8)

Since H0,Λ + Emin > 0 from the assumption Emin > ‖V −
0 ‖∞, one has

ψE = 1

H0,Λ + Emin
(−Vω,Λ +E + Emin)ψE

= 1

H0,Λ + Emin
(−Vω,Λ +Hω,Λ + Emin)ψE. (A.9)

Using this identity, one obtains

TrQω,Λ(�)

= Tr(H0,Λ + Emin)
−2(−Vω,Λ +Hω,Λ + Emin)Qω,Λ(�)(−Vω,Λ +Hω,Λ + Emin)

= Tr(H0,Λ + Emin)
−2Vω,ΛQω,Λ(�)Vω,Λ

− Tr(H0,Λ + Emin)
−2Vω,Λ(Hω,Λ + Emin)Qω,Λ(�)

− Tr(H0,Λ + Emin)
−2(Hω,Λ + Emin)Qω,Λ(�)Vω,Λ

+ Tr(H0,Λ + Emin)
−2(Hω,Λ + Emin)

2Qω,Λ(�). (A.10)

Let us evaluate the first term in the last line of the right-hand side. Substituting the ex-
pression (A.2) of Vω into the term, one has

Tr(H0,Λ + Emin)
−2Vω,ΛQω,Λ(�)Vω,Λ

=
∑

a,b

λaλb Tr(H0,Λ + Emin)
−2ua,ΛQω,Λ(�)ub,Λ

=
∑

a,b

λaλb Tru1/2
b,Λ(H0,Λ + Emin)

−2u
1/2
a,Λu

1/2
a,ΛQω,Λ(�)u

1/2
b,Λ, (A.11)

where we have written ua(r)= u(r − a) and ua,Λ = ua|Λ. Since the operator

Υ
(1)

b,a := u
1/2
b,Λ(H0,Λ + Emin)

−2u
1/2
a,Λ (A.12)
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is compact, there exist a pair of orthonormal bases, {ϕ(1)n }∞
n=1 and {ψ(1)

n }∞
n=1, and nonnegative

numbers {μ(1)
n }∞

n=1 such that11

Υ
(1)

b,a =
∞∑

n=1

μ(1)
n ϕ(1)

n (ψ(1)
n , . . .). (A.13)

The numbers μ(1)
n are the eigenvalues of |Υ (1)

b,a |. Using this representation (A.13), one has

|TrΥ (1)
b,au

1/2
a,ΛQω,Λ(�)u

1/2
b,Λ|

≤
∞∑

n=1

μ(1)
n |(ψ(1)

n , u
1/2
a,ΛQω,Λ(�)u

1/2
b,Λϕ

(1)
n )|

≤ 1

2

∞∑

n=1

μ(1)
n [(ψ(1)

n , u
1/2
a,ΛQω,Λ(�)u

1/2
a,Λψ

(1)
n )+ (ϕ(1)n , u

1/2
b,ΛQω,Λ(�)u

1/2
b,Λϕ

(1)
n )]. (A.14)

Therefore the expectation value of the left-hand side of the first inequality can be bounded
from above as

EΛ[|TrΥ (1)
b,au

1/2
a,ΛQω,Λ(�)u

1/2
b,Λ|]

≤ 1

2

( ∞∑

n=1

μ(1)
n

)
sup
n

EΛ[(ψ(1)
n , u

1/2
a,ΛQω,Λ(�)u

1/2
a,Λψ

(1)
n )

+ (ϕ(1)n , u
1/2
b,ΛQω,Λ(�)u

1/2
b,Λϕ

(1)
n )], (A.15)

where EΛ[· · ·] stands for the expectation with respect to the random variables on a region
Λ ⊂ Rd . The right-hand side can be evaluated by using the following Lemma A.1 which
is essentially due to Kotani and Simon [47]. In order to make this paper self-contained, we
give the proof of Lemma A.1 in Appendix B, following from Ref. [41].

Lemma A.1 Let v be a nonnegative function satisfying v ≤ ua,Λ. Then

∥∥∥∥
∫

R
dλag(λa)v

1/2Qω,Λ(�)v
1/2

∥∥∥∥ ≤ ‖g‖∞|�|. (A.16)

From the bound (A.16) and the inequality (A.15), one has

EΛ[|TrΥ (1)
b,au

1/2
a,ΛQω,Λ(�)u

1/2
b,Λ|] ≤ ‖g‖∞|�|‖Υ (1)

b,a ‖1, (A.17)

where ‖ · · · ‖1 := Tr | · · · |. Moreover, combining this bound with (A.11), one gets

EΛ[Tr(H0,Λ + Emin)
−2Vω,ΛQω,Λ(�)Vω,Λ]

=
∑

a,b

EΛ[λaλb TrΥ (1)
b,au

1/2
a,ΛQω,Λ(�)u

1/2
b,Λ]

11See, for example, Chapter VI of the book by Reed and Simon [46].
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≤ M2
∑

a,b

EΛ[|TrΥ (1)
b,au

1/2
a,ΛQω,Λ(�)u

1/2
b,Λ|]

≤ M2‖g‖∞|�|
∑

a,b

‖Υ (1)
b,a ‖1, (A.18)

where M := supλ∈suppg |λ|.
Next consider the second term in the right-hand side of the second equality in (A.10).

From the assumption (A.4), one can easily find a set of nonnegative functions {ũa,Λ}a satis-
fying the following two conditions:

ũa,Λ ≤ ua,Λ for any lattice site a, (A.19)

and
∑

a

ũa,Λ = UminχΛ. (A.20)

Using the identity (A.20), one has

Tr(H0,Λ + Emin)
−2Vω,Λ(Hω,Λ + Emin)Qω,Λ(�)

=
∑

a

λa Tr(H0,Λ + Emin)
−2ua,Λ(Hω,Λ + Emin)Qω,Λ(�)χΛ

= 1

Umin

∑

a,b

λa Tr(H0,Λ + Emin)
−2ua,Λ(Hω,Λ + Emin)Qω,Λ(�)ũb,Λ

= 1

Umin

∑

a,b

λa TrΥ (2)
b,au

1/2
a,Λ(Hω,Λ + Emin)Qω,Λ(�)ũ

1/2
b,Λ, (A.21)

where

Υ
(2)

b,a := ũ
1/2
b,Λ(H0,Λ + Emin)

−2u
1/2
a,Λ. (A.22)

In the same way,

|TrΥ (2)
b,au

1/2
a,Λ(Hω,Λ + Emin)Qω,Λ(�)ũ

1/2
b,Λ|

≤
∞∑

n=1

μ(2)
n |(ψ(2)

n , u
1/2
a,Λ(Hω,Λ + Emin)Qω,Λ(�)ũ

1/2
b,Λϕ

(2)
n )|

≤ Emax(�)

2

∞∑

n=1

μ(2)
n [(ψ(2)

n , u
1/2
a,ΛQω,Λ(�)u

1/2
a,Λψ

(2)
n )

+ (ϕ(2)n ũ
1/2
b,ΛQω,Λ(�)ũ

1/2
b,Λϕ

(2)
n )], (A.23)

where {ϕ(2)n }∞
n=1 and {ψ(2)

n }∞
n=1 are orthonormal bases such that

Υ
(2)

b,a =
∞∑

n=1

μ(2)
n ϕ(2)

n (ψ(2)
n , . . .) (A.24)

with the eigenvalues μ(2)
n of |Υ (2)

b,a |, and

Emax(�)= sup
E∈�

|E + Emin|. (A.25)
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Combining (A.21), (A.23) and Lemma A.1 with the condition (A.19), one has

EΛ[|Tr(H0,Λ + Emin)
−2Vω,Λ(Hω,Λ + Emin)Qω,Λ(�)|]

≤ M
Emax(�)

Umin
‖g‖∞|�|

∑

a,b

‖Υ (2)
b,a ‖1. (A.26)

In the same way,

EΛ[|Tr(H0,Λ + Emin)
−2(Hω,Λ + Emin)Qω,Λ(�)Vω,Λ|]

≤ M
Emax(�)

Umin
‖g‖∞|�|

∑

a,b

‖Υ (3)
b,a ‖1 (A.27)

and

EΛ[|Tr(H0,Λ + Emin)
−2(Hω,Λ + Emin)

2Qω,Λ(�)|]

≤
(
Emax(�)

Umin

)2

‖g‖∞|�|
∑

a,b

‖Υ (4)
b,a ‖1, (A.28)

where

Υ
(3)

b,a := u
1/2
b,Λ(H0,Λ + Emin)

−2ũ
1/2
a,Λ,

(A.29)
Υ

(4)
b,a := ũ

1/2
b,Λ(H0,Λ + Emin)

−2ũ
1/2
a,Λ.

Next let us estimate
∑

a,b ‖Υ (i)

b,a‖1, i = 1,2,3,4. For simplicity, we consider only the case
with i = 1 because all the other cases can be estimated in the same way. We decompose the
sum into two parts as

∑

a,b

‖Υ (1)
b,a ‖1 =

∑

a,b
overlap

‖Υ (1)
b,a ‖1 +

∑

a,b
non-overlap

‖Υ (1)
b,a ‖1, (A.30)

where the first sum is over the lattice sites a,b such that the corresponding two potentials
ua,Λ, ub,Λ overlap with each other, and the second sum is over those for the non-overlapping
potentials. Note that

‖Υ (i)

b,a‖1 ≤
√

‖Υ (i)

b,b‖1‖Υ (i)
a,a‖1, (A.31)

where we have used the inequality ‖AB‖1 ≤ ‖A‖2‖B‖2 for bounded operators A,B . Here
the norm ‖ · · · ‖2 is defined as ‖A‖2 := √

TrA∗A for a bounded operator A if the right-hand
side exists. Using the inequality (A.31) and the assumption (A.5), one has

∑

a,b
overlap

‖Υ (1)
b,a ‖1 ≤ Const ×K0‖u‖∞| suppu|n0 |Λ|, (A.32)

where the positive constant depends only on the lattice Ld and on the support of the poten-
tial u, and so the constant is finite from the assumptions on the lattice and the potential.
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Using Proposition C.1 in Appendix C, the second sum in the right-hand side of (A.30)
can be evaluated as

∑

a,b
non-overlap

‖Υ (1)
b,a ‖1 ≤ Const × ‖u‖∞

(1 − κ2)(Emin − ‖V −
0 ‖∞)

K0| suppu|n0/2
∑

a,b
non-overlap

rne−αr

≤ Const × ‖u‖∞
(1 − κ2)(Emin − ‖V −

0 ‖∞)
K0K2(α)| suppu|n0/2|Λ|, (A.33)

where α is given by (C.2), r = dist(suppua, suppub), and the positive constant K2(α) satis-
fies the bound:

K2(α)≤ Const ×
∑

b

rne−αr (A.34)

with the positive constant and with a fixed lattice site a. Combining this result with the
bound (A.32), one has

∑

a,b

‖Υ (1)
b,a ‖1 ≤ Const ×K0K1‖u‖∞| suppu|n0/2|Λ| (A.35)

with the positive constant

K1 = | suppu|n0/2 + K2(α)

(1 − κ2)(Emin − ‖V −
0 ‖∞)

. (A.36)

Clearly this constant K1 is independent of the strength B of the magnetic field and of the
random potential Vω . From the condition (A.19) for ũa,Λ, the following bounds also hold:

∑

a,b

‖Υ (i)

b,a‖1 ≤ Const ×K0K1‖u‖∞| suppu|n0 |Λ| (A.37)

for all i = 1,2,3,4. Combining this, (A.10), (A.18), (A.26), (A.27) and (A.28), one obtains
the following theorem:

Theorem A.2 Assume the conditions (A.4) and (A.5). Let � = [E − δE,E + δE] be an
interval of the energy with δE > 0. Then the following inequality is valid:

Prob[dist(σ (Hω,Λ),E) < δE] ≤ EΛ[TrQω,Λ(�)] ≤ CWK3‖g‖∞δE|Λ| (A.38)

with some positive constant CW and with

K3 = [M+ Emax(�)/Umin]2K0K1‖u‖∞| suppu|n0 . (A.39)

Here EΛ[· · ·] is the expectation with respect to the random variables on a region Λ⊂ Rd .

Remark Consider the present system with the unperturbed Hamiltonian (2.2). The posi-
tive number K0 behaves as K0 ∼ Const × B−1 for a large B as in (A.7). From the defini-
tion (A.25), Emax(�)∼ Const×B for a large B . Substituting these into the above expression
(A.39) of K3, one has K3 ∼ Const × B for a large B . From this observation and the above
theorem, one notices that the upper bound for the number of the states in the energy interval
with a fixed width δE is proportional to the strength B of the magnetic field for a large B .
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Appendix B: Proof of Lemma A.1

Following Combes and Hislop [41], we give the proof of the Kotani-Simon lemma [47].
We begin with preparing the following lemma:

Lemma B.1 Write Hω,Λ =H ′
ω,Λ+λaua,Λ. Let v be a nonnegative function satisfying ua,Λ ≥

v, and define

K(λ,E − iδ)= v1/2(H ′
ω,Λ + λua,Λ −E + iδ)−1v1/2 (B.1)

for E ∈ R and δ > 0. Then

∥∥∥∥
∫

R
dλ

λ2
0

λ2 + λ2
0

K(λ,E − iδ)

∥∥∥∥ ≤ π (B.2)

for λ0 > 0.

Proof Since K(λ,E − iδ) is holomorphic in λ in the upper half-plane, one has

∫

R
dλ

λ2
0

λ2 + λ2
0

K(λ,E − iδ)= πλ0K(iλ0,E − iδ). (B.3)

Note that

− ImK(iλ0,E − iδ)

= v1/2(H ′
ω,Λ − iλ0ua,Λ −E − iδ)−1(λ0ua,Λ + δ)(H ′

ω,Λ + iλ0ua,Λ −E + iδ)−1v1/2

≥ λ0K(iλ0,E − iδ)∗K(iλ0,E − iδ), (B.4)

where we have used the assumptions ua,Λ ≥ v and δ > 0. This implies ‖K(iλ0,E − iδ)‖ ≤
λ−1

0 . Combining this with the above (B.3), one has the desired result (B.2). �

Proof of Lemma A.1 Let �̃⊃� and �̃ �=�. Using Stone’s formula, one has

(ϕ, v1/2Qω,Λ(�)v
1/2ϕ)≤ 1

π
lim
δ↓0

Im
∫

�̃

dE(ϕ, v1/2(Hω,Λ −E + iδ)−1v1/2ϕ) (B.5)

for any vector ϕ. Further,

∫

R
dλa

λ2
0

λ2
a + λ2

0

(ϕ, v1/2Qω,Λ(�)v
1/2ϕ)

≤ 1

π
lim
δ↓0

Im
∫

�̃

dE

∫

R
dλa

λ2
0

λ2
a + λ2

0

(ϕ,K(λa,E − iδ)ϕ)≤ |�̃|‖ϕ‖2 (B.6)

by using Fubini’s theorem and Lemma B.1. Here λ0 > 0, and K(λ,E− iδ) is given by (B.1).
Since g ∈ L∞(R) with compact support from the assumption, one has

∥∥∥∥
∫

R
dλag(λa)v

1/2Qω,Λ(�)v
1/2

∥∥∥∥ ≤ sup
λ

g(λ)
λ2 + λ2

0

λ2
0

|�| (B.7)

for any λ0 > 0. This proves the bound (A.16). �
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Appendix C: A Decay Estimate of Υ
(i)

b,a

In this appendix, we follow Barbaroux, Combes and Hislop [18], in order to estimate Υ (i)

b,a
that appear in Appendix A. The result is summarized as the following proposition:

Proposition C.1 Let v,w be bounded functions with a compact support, and suppose
dist(suppv, suppw)= r with a positive distance r . Then

‖v(R0,Λ)
2w‖1 ≤ Const × ‖v‖∞‖w‖∞

(1 − κ2)(Emin − ‖V −
0 ‖∞)

×K0(| suppv|n0/2 + | suppw|n0/2)rne−αr (C.1)

with

α =
√

2me(Emin − ‖V −
0 ‖∞)

3�
κ with κ ∈ (0,1) (C.2)

and with some positive number n, where R0,Λ = (H0,Λ + Emin)
−1, and ‖ · · · ‖1 := Tr | · · · |.

The constants K0 and n0 are given in (A.5).

Let Ω be a region in Rd . Then we denote by ∂Ω the boundary of Ω , and define the
subset Ωin of Ω as Ωin = {r ∈ Ω | dist(r, ∂Ω) > δ} with a positive δ. With a small δ, one
can take three regions Ω(i), i = 1,2,3 satisfying the following conditions:

suppv ⊂Ω
(1)
in ⊂Ω(1) ⊂Ω

(2)
in ⊂Ω(2) ⊂Ω

(3)
in ⊂Ω(3) ⊂Λ, (C.3)

|Ω(2)| ≤ Const × rd, (C.4)

dist(suppw,Ω(3)) > r/3, (C.5)

and

dist(suppv,Γ (1)) > r/3, (C.6)

where Γ (1) =Ω(1)\Ω(1)
in , and we also write Γ (i) =Ω(i)\Ω(i)

in for i = 2,3.
Let χ̃i ∈ C2(Λ), i = 1,2,3, be three nonnegative functions satisfying

χ̃i |Ω(i)
in

= 1 and χ̃i |Λ\Ω(i) = 0. (C.7)

In the following, we denote by χ ′
i the characteristic function χΓ (i) of the region Γ (i) for

i = 1,2,3, and write R0,i = R0,Ω(i) = (H0,Ω(i) + Emin)
−1 for i = 1,2,3. Next introduce the

geometric resolvent equation,

χ̃iR0,Λ =R0,i χ̃i +R0,iW(χ̃i)R0,Λ (C.8)

for i = 1,2,3, where W(· · ·) is given by (5.7).
Using (C.8) and vχ̃2 = v, one has

v(R0,Λ)
2w = vχ̃2(R0,Λ)

2w = vR0,2χ̃2R0,Λw + vR0,2W(χ̃2)(R0,Λ)
2w. (C.9)
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The first term in the right-hand side can be rewritten as

vR0,2χ̃2R0,Λw = v(R0,2)
2W(χ̃2)R0,Λw

= v(R0,2)
2W(χ̃2)χ̃3R0,Λw

= v(R0,2)
2W(χ̃2)R0,3W(χ̃3)R0,Λw (C.10)

by using χ̃2w = χ̃3w = 0, W(χ̃2)χ̃3 = W(χ̃2) and the geometric resolvent equation (C.8).
Therefore

‖vR0,2χ̃2R0,Λw‖1 = ‖v(R0,2)
2W(χ̃2)R0,3W(χ̃3)R0,Λw‖1

≤ ‖vR0,2‖2‖R0,2W(χ̃2)R0,3W(χ̃3)R0,Λw‖2

≤ ‖vR0,2‖2‖wR0,ΛW
∗(χ̃3)R0,3W

∗(χ̃2)R0,2‖2

= ‖vR0,2‖2‖wR0,Λχ
′
3W

∗(χ̃3)R0,3W
∗(χ̃2)R0,2‖2

≤ ‖vR0,2‖2‖wR0,Λχ
′
3‖‖W ∗(χ̃3)R0,3W

∗(χ̃2)R0,2‖2, (C.11)

where we have used χ ′
3W

∗(χ̃3) = W ∗(χ̃3), the equality ‖A∗‖2 = ‖A‖2 and the inequality
‖AB‖1 ≤ ‖A‖2‖B‖2 for bounded operators A,B . The norm ‖ · · · ‖2 is defined as ‖A‖2 :=√

TrA∗A for a bounded operator A.
The second term in the right-hand side of (C.9) can be written as

vR0,2W(χ̃2)(R0,Λ)
2w = vχ̃1R0,2W(χ̃2)(R0,Λ)

2w

= vR0,1W(χ̃1)R0,2W(χ̃2)(R0,Λ)
2w (C.12)

by using vχ̃1 = v, χ̃1W(χ̃2)= 0, and the geometric resolvent equation

χ̃1R0,2 =R0,1χ̃1 +R0,1W(χ̃1)R0,2. (C.13)

Therefore the norm can be evaluated as

‖vR0,2W(χ̃2)(R0,Λ)
2w‖1 = ‖vR0,1W(χ̃1)R0,2W(χ̃2)(R0,Λ)

2w‖1

= ‖vR0,1χ
′
1W(χ̃1)R0,2W(χ̃2)(R0,Λ)

2w‖1

≤ ‖vR0,1χ
′
1‖‖W(χ̃1)R0,2W(χ̃2)(R0,Λ)

2w‖1

≤ ‖vR0,1χ
′
1‖‖W(χ̃1)R0,2W(χ̃2)R0,Λ‖2‖R0,Λw‖2, (C.14)

where we have used the identity χ ′
1W(χ̃1)=W(χ̃1).

Combining (C.9), (C.11) and (C.14), one has

‖v(R0,Λ)
2w‖1 ≤ ‖vR0,2χ̃2R0,Λw‖1 + ‖vR0,2W(χ̃2)(R0,Λ)

2w‖1

≤ ‖vR0,2‖2‖wR0,Λχ
′
3‖‖W ∗(χ̃3)R0,3W

∗(χ̃2)R0,2‖2

+ ‖R0,Λw‖2‖vR0,1χ
′
1‖‖W(χ̃1)R0,2W(χ̃2)R0,Λ‖2. (C.15)

In order to estimate the right-hand side, we use the following lemma:



Widths of the Hall Conductance Plateaus 901

Lemma C.2 Let ϕ be a vector in the domain of the Hamiltonian H0,Ω(2) . Then

‖W ∗(χ̃3)R0,3W
∗(χ̃2)ϕ‖ ≤ Const × ‖ϕ‖, (C.16)

where the positive constant in the right-hand side depends only on the cut-off functions, χ̃2

and χ̃3.

Proof Note that

‖W ∗(χ̃3)R0,3W
∗(χ̃2)ϕ‖ ≤ ‖W ∗(χ̃3)R

1/2
0,3 ‖‖R1/2

0,3 W
∗(χ̃2)ϕ‖. (C.17)

Using (5.9), one has

‖W ∗(χ̃3)R
1/2
0,3 ‖ ≤ �

me

‖(∇χ̃3) · (p + eA)R1/2
0,3 ‖ + �

2

2me

‖(�χ̃3)R
1/2
0,3 ‖. (C.18)

The first term in the right-hand side can be estimated as follows: Using the Schwarz inequal-
ity, one has

(ψ,R
1/2
0,3 (p + eA) · (∇χ̃3)(∇χ̃3) · (p + eA)R1/2

0,3 ψ)

≤
√
(ψ,R

1/2
0,3 (p + eA)2R

1/2
0,3 ψ)

×
√
(ψ,R

1/2
0,3 (p + eA) · (∇χ̃3)|∇χ̃3|2(∇χ̃3) · (p + eA)R1/2

0,3 ψ)

≤ √
2me‖|∇χ̃3|‖∞‖(∇χ̃3) · (p + eA)R1/2

0,3 ψ‖‖ψ‖ (C.19)

for any vector ψ , where we have used

R
1/2
0,3

1

2me

(p + eA)2R
1/2
0,3 ≤ 1 (C.20)

which is derived from the assumption Emin > ‖V −
0 ‖∞. As a result, one obtain

‖(∇χ̃3) · (p + eA)R1/2
0,3 ‖ ≤ √

2me‖|∇χ̃3|‖∞. (C.21)

Substituting this into the right-hand side of (C.18), one gets

‖W ∗(χ̃3)R
1/2
0,3 ‖ ≤ �

√
me

2
‖|∇χ̃3|‖∞ + �

2

2me

‖�χ̃3‖∞√
Emin − ‖V −

0 ‖∞
. (C.22)

Using (5.9) again, one has

‖R1/2
0,3 W

∗(χ̃2)ϕ‖ ≤ �

me

‖R1/2
0,3 (p + eA) · (∇χ̃2)ϕ‖ + �

2

2me

‖R1/2
0,3 (�χ̃2)ϕ‖. (C.23)

The norm of the first term in the right-hand side can be evaluated as

(ϕ, (∇χ̃2) · (p + eA)R0,3(p + eA) · (∇χ̃2)ϕ)

≤ ‖|∇χ̃2|‖∞‖ϕ‖
√
(ϕ, (∇χ̃2) · (p + eA)R0,3(p + eA)2R0,3(p + eA) · (∇χ̃2)ϕ)

≤ √
2me‖|∇χ̃2|‖∞‖ϕ‖‖R1/2

0,3 (p + eA) · (∇χ̃2)ϕ‖, (C.24)
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where we have used the Schwarz inequality and the inequality (C.20). Therefore,

‖R1/2
0,3 (p + eA) · (∇χ̃2)ϕ‖ ≤ √

2me‖|∇χ̃2|‖∞‖ϕ‖. (C.25)

Substituting this into the right-hand side of (C.23), one gets

‖R1/2
0,3 W

∗(χ̃2)ϕ‖ ≤
{

�

√
me

2
‖|∇χ̃2|‖∞ + �

2

2me

‖�χ̃2‖∞√
Emin − ‖V −

0 ‖∞

}
‖ϕ‖. (C.26)

The bound (C.16) follows from (C.17), (C.22) and (C.26). �

From this lemma, immediately one gets

‖W ∗(χ̃3)R0,3W
∗(χ̃2)R0,2‖2 ≤ Const × ‖χ ′

2R0,2‖2. (C.27)

In the same way,

‖W(χ̃1)R0,2W(χ̃2)R0,Λ‖2 ≤ Const × ‖χ ′
2R0,Λ‖2. (C.28)

Substituting these two bounds into (C.15), one gets

‖v(R0,Λ)
2w‖1 ≤ Const × [‖vR0,2‖2‖χ ′

2R0,2‖2‖wR0,Λχ
′
3‖

+ ‖R0,Λw‖2‖χ ′
2R0,Λ‖2‖vR0,1χ

′
1‖]. (C.29)

Note that the ground state energy E0 of the Hamiltonian H0,Λ satisfies E0 ≥ −‖V −
0 ‖∞.

Taking

β =
√

2me(Emin − ‖V −
0 ‖∞)

�
κ with κ ∈ (0,1) (C.30)

in the bound (D.32) in the next Appendix D, one has

‖vR0,Ωw‖ ≤ ‖v‖∞‖w‖∞
(1 − κ2)(Emin − ‖V −

0 ‖∞)
e−βr for a region Ω, (C.31)

where r is the distance between the supports of the two functions v and w. Combining this
inequality, (C.5), (C.6) and (C.29), one has

‖v(R0,Λ)
2w‖1 ≤ Const × ‖v‖∞‖w‖∞

(1 − κ2)(Emin − ‖V −
0 ‖∞)

×
[‖vR0,2‖2

‖v‖∞
‖χ ′

2R0,2‖2 + ‖R0,Λw‖2

‖w‖∞
‖χ ′

2R0,Λ‖2

]
e−αr , (C.32)

where α = β/3 with the above β of (C.30). Further,

‖v(R0,Λ)
2w‖1 ≤ Const × ‖v‖∞‖w‖∞

(1 − κ2)(Emin − ‖V −
0 ‖∞)

×K0(| suppv|n0/2 + | suppw|n0/2)|Ω(2)\Ω(2)
in |n0/2e−αr (C.33)

by using the assumption (A.5). Thus one gets the desired bound (C.1) from the bound (C.4)
on the region Ω(2).
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Appendix D: Decay Estimates of Resolvents

In this appendix, the exponential decay bound for the resolvent (Hω − z)−1 is obtained by
using the Combes-Thomas method [40].

D.1 The General Case

For the general case with AP �= 0, we use the improved version [18] of the Combes-Thomas
method [40]. The results are given by Theorem D.2 and the bound (D.32) below.

Consider the d-dimensional Hamiltonian,

HΛ = 1

2me

(p + eA)2 + VΛ, (D.1)

with a general vector potential A ∈ C1(Λ,Rd) and a general electrostatic potential VΛ ∈
L∞(Λ). Let jδ ∈ C∞

0 (Rd) satisfying jδ ≥ 0, supp jδ ⊂ {r | |r| ≤ δ} with a small δ and∫
Rd jδ(r)dx1 · · ·dxd = 1. Let Ω be a bounded region with smooth boundary, and define
ρ̃(r) = dist(r,Ω). Following [15], we introduce the smooth distance function ρ(r) =
jδ ∗ ρ̃(r). Note that, for β > 0,

e−βρHΛe
βρ = 1

2me

(p + eA − i�β∇ρ)2 + VΛ

= HΛ − �
2β2

2me

(∇ρ)2 − i�β

2me

[∇ρ · (p + eA)+ (p + eA) · ∇ρ]. (D.2)

We write

e−βρHΛe
βρ = H̃Λ + iβJ (D.3)

with

H̃Λ =HΛ − �
2β2

2me

(∇ρ)2,

(D.4)

J = − �

2me

[∇ρ · (p + eA)+ (p + eA) · ∇ρ].

We take C̃0 > 0 satisfying

−‖V −
Λ ‖∞ − �

2β2

2me

‖|∇ρ|‖2
∞ + C̃0 > 0, (D.5)

where V ±
Λ = max{±VΛ,0}. Then one has

H̃Λ + C̃0 ≥ C0 > 0 (D.6)

with some constant C0. We define

XE+iε = H̃Λ −E − iε

H̃Λ + C̃0

for E,ε ∈ R, (D.7)

and define

Y = (H̃Λ + C̃0)
−1/2J (H̃Λ + C̃0)

−1/2. (D.8)
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Let us estimate the norm ‖Y‖ of this operator. From the expression (D.4) of the opera-
tor J , one has

‖Y‖ ≤ �

2me

[‖R̃1/2∇ρ · (p + eA)R̃1/2‖ + ‖R̃1/2(p + eA) · ∇ρR̃1/2‖], (D.9)

where we have written R̃ = (H̃Λ + C̃0)
−1. Take ψ = R̃1/2ϕ with ϕ ∈ L2(Λ). Using the

Schwarz inequality and (D.6), one has

(ψ, (p + eA) · ∇ρR̃∇ρ · (p + eA)ψ)

≤
√
(ψ, (p + eA)2ψ)×

√
(ψ, (p + eA) · ∇ρR̃|∇ρ|2R̃∇ρ · (p + eA)ψ)

≤ √
2me‖|∇ρ|‖∞‖ϕ‖

√
(ψ, (p + eA) · ∇ρR̃2∇ρ · (p + eA)ψ)

≤
√

2me

C0
‖|∇ρ|‖∞‖ϕ‖

√
(ψ, (p + eA) · ∇ρR̃∇ρ · (p + eA)ψ). (D.10)

Therefore

(ψ, (p + eA) · ∇ρR̃∇ρ · (p + eA)ψ)≤ 2me

C0
‖|∇ρ|‖2

∞‖ϕ‖2. (D.11)

Similarly

(ψ,∇ρ · (p + eA)R̃(p + eA) · ∇ρψ)

≤ ‖|∇ρ|‖∞‖ψ‖
√
(ψ,∇ρ · (p + eA)R̃(p + eA)2R̃(p + eA) · ∇ρψ)

≤ √
2me‖|∇ρ|‖∞‖ψ‖

√
(ψ,∇ρ · (p + eA)R̃(p + eA) · ∇ρψ). (D.12)

This implies

(ψ,∇ρ · (p + eA)R̃(p + eA) · ∇ρψ)

≤ 2me‖|∇ρ|‖2
∞‖ψ‖2 ≤ 2me

C0
‖|∇ρ|‖2

∞‖ϕ‖2. (D.13)

Substituting these bounds into (D.9), one has

‖Y‖ ≤
√

2�√
meC0

‖|∇ρ|‖∞. (D.14)

Consider the situation that the Hamiltonian HΛ has a spectral gap (E−,E+), and we
take E ∈ (E−,E+). We define d± := dist(σ (XE) ∩ R±,0), and u± = P±u, where P± is
the spectral projections for XE onto the subspaces corresponding to the sets σ(XE) ∩ R±,
respectively. We take β satisfying E+ −E > �

2β2‖|∇ρ|‖2∞/(2me). Then one has

d+ >
E+ −E − �

2β2‖|∇ρ|‖2∞/(2me)

E+ + C̃0

=: δ+ (D.15)

and

d− >
E −E−
E− + C̃0

=: δ−. (D.16)
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Lemma D.1 Suppose that the parameter β satisfies the condition,

0 < β <

√
2meC0

�‖|∇ρ|‖∞
min

{
1

4

√
δ+δ−,

√
E+ −E

C0

}
. (D.17)

Then

‖(XE+iε + iβY )u‖ ≥ 1

2
min{d+, d−}‖u‖ (D.18)

for ε ∈ R.

Proof From the bound (D.14) for ‖Y‖ and the assumption on β , one has

β‖Y‖ ≤ 1

2

√
δ+δ− ≤ 1

2

√
d+d−. (D.19)

Note that XE+iε =XE − iεR̃ with R̃ = (H̃Λ + C̃0)
−1. Using this and the Schwarz inequality,

one gets

‖u‖‖(XE+iε + iβY )u‖ ≥ Re((u+ − u−), (XE − iεR̃ + iβY )(u+ + u−))

≥ d+‖u+‖2 + d−‖u−‖2 − 2β Im(u+, Yu−)

≥ 1

2
(d+‖u+‖2 + d−‖u−‖2). (D.20)

This implies the desired bound. �

We write

β =
√

2me

�‖|∇ρ|‖∞

√
E+ −E × κ (D.21)

in terms of the parameter κ ∈ (0,1). Substituting this into (D.15), one has

δ+ = E+ −E

E+ + C̃0

(1 − κ2). (D.22)

Further, by substituting these into the bound (D.17), the maximum value of κ satisfying the
bound is obtained as

κ =
√

C0(E −E−)
C0(E −E−)+ 16(E+ + C̃0)(E− + C̃0)

< 1. (D.23)

As a result, we can take

β =
√

2me

�‖|∇ρ|‖∞

√
C0(E+ −E)(E −E−)

C0(E −E−)+ 16(E+ + C̃0)(E− + C̃0)
. (D.24)

Theorem D.2 Let E be in the spectral gap (E−,E+) ⊂ R of the Hamiltonian HΛ. Let
v,w be bounded functions with a compact support. Suppose that the boundary of suppv is
smooth. Then

‖v(HΛ −E − iε)−1w‖ ≤ C1‖v‖∞‖w‖∞e−βr for ε ∈ R, (D.25)
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where r = dist(suppv, suppw), β is given by (D.24), and

C1 = Const ×C−1
0 max

{
E+ + C̃0

(1 − κ2)(E+ −E)
,
E− + C̃0

E −E−

}
(D.26)

with κ given by (D.23). The two real constants C0 and C̃0 satisfy the conditions H̃ + C̃0 >

C0 > 0 and (D.5).

Proof Let ϕ be in the domain of the operator H̃Λ. Then

‖(H̃Λ + iβJ −E − iε)ϕ‖ = ‖(H̃Λ + C̃0)
1/2(XE+iε + iβY )(H̃Λ + C̃0)

1/2ϕ‖
≥ C

1/2
0 ‖(XE+iε + iβY )(H̃Λ + C̃0)

1/2ϕ‖

≥ 1

2
C

1/2
0 min{d+, d−}‖(H̃Λ + C̃0)

1/2ϕ‖

≥ 1

2
C0 min{d+, d−}‖ϕ‖, (D.27)

where we have used the inequality (D.18) and H̃Λ + C̃0 >C0. Taking

ϕ = e−βρ 1

HΛ −E − iε
eβρu, (D.28)

one has

‖e−βρ(HΛ −E − iε)−1eβρu‖ ≤ C1‖u‖, (D.29)

where we have used (D.3), (D.15) and (D.16). Choosing Ω = suppv in the definition of the
distance function ρ(r) and using this bound (D.29), the desired bound (D.25) is obtained as

Const × ‖v(HΛ −E − iε)−1w‖ ≤ ‖ve−βρ(HΛ −E − iε)−1w‖
≤ ‖v‖∞‖e−βρ(HΛ −E − iε)−1eβρe−βρw‖
≤ C1‖v‖∞‖e−βρw‖
≤ Const ×C1‖v‖∞‖w‖∞e−βr . � (D.30)

Next consider the case with HΛ >E. Then the Schwarz inequality yields

‖ϕ‖‖(H̃Λ −E + iβJ )ϕ‖ ≥ Re(ϕ, (H̃Λ −E + iβJ )ϕ)

= (ϕ, (H̃Λ −E)ϕ)

≥ [E0 −E − �
2β2‖|∇ρ|‖2

∞/(2me)]‖ϕ‖ (D.31)

for ϕ in the domain of HΛ. Here E0 is the ground state energy of HΛ. Therefore, in the same
way as in the proof of Theorem D.2, one has

∥∥∥∥v
1

HΛ −E
w

∥∥∥∥ ≤ Const × ‖v‖∞‖w‖∞
E0 −E − �2β2‖|∇ρ|‖2∞/(2me)

e−βr

for 0 < β <

√
2me(E0 −E)

�‖|∇ρ|‖∞
, (D.32)
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where v,w and r are the same as in Theorem D.2.
Finally, we consider the decay of (HΛ −E − iy)−1 with y �= 0. To begin with, we note

that

‖ϕ‖‖[HΛ − (�2β2/(2me))(∇ρ)2 −E − iy + iβJ ]ϕ‖
≥ |(ϕ, [HΛ − (�2β2)/(2me))(∇ρ)2 −E − iy + iβJ ]ϕ)|
=

√
|(ϕ, [HΛ − (�2β2/(2me))(∇ρ)2 −E]ϕ)|2 + |(ϕ, (y − βJ )ϕ)|2. (D.33)

Let E′ be a real number satisfying

E′ >E + �
2β2

2me

‖|∇ρ|‖2
∞ +C2 (D.34)

with a positive constant C2. Then if the vector ϕ satisfies (ϕ,HΛϕ)≥E′‖ϕ‖2, the right-hand
side of (D.33) is bounded from below by C2‖ϕ‖2.

Thus it is sufficient to consider the case that (ϕ,HΛϕ) < E′‖ϕ‖2. Note that

|(ϕ, (y − βJ )ϕ)| ≥ ||y|‖ϕ‖2 − β|(ϕ, Jϕ)||. (D.35)

The expectation value in the right-hand side is evaluated as

|(ϕ, Jϕ)| ≤ �

me

|(ϕ,∇ρ · (p + eA)ϕ)|

≤ �

me

‖|∇ρ|‖∞‖ϕ‖
√
(ϕ, (p + eA)2ϕ)

≤ �

√
2

me

‖|∇ρ|‖∞‖ϕ‖√(ϕ, (HΛ + ‖VΛ‖∞)ϕ)

≤ �‖|∇ρ|‖∞
√

2(E′ + ‖VΛ‖∞)/me‖ϕ‖2. (D.36)

For a given y, we choose a small β and a small C2 to satisfy

|y|> β�‖|∇ρ|‖∞
√

2(E′ + ‖VΛ‖∞)/me +C2. (D.37)

Then these bounds yield

|(ϕ, (y − βJ )ϕ)| ≥ C2‖ϕ‖2. (D.38)

This implies that the right-hand side of (D.33) is bounded from below by the same C2‖ϕ‖2.
Thus, in both of the cases, one obtains

‖[HΛ − (�2β2/(2me))(∇ρ)2 −E − iy + iβJ ]ϕ‖ ≥ C2‖ϕ‖. (D.39)

In the same way as the above, this leads to the decay bound,

‖v(HΛ −E − iy)−1w‖ ≤ Const ×C−1
2 ‖v‖∞‖w‖∞e−βr . (D.40)

Clearly, for a small |y|, both of the parameters β and C2 must be small. But the resolvent
always decays exponentially at large distance for any y �= 0.
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D.2 The Landau Hamiltonian with AP = 0

Following [15, 16], we obtain the exponential decay bound (D.85) for the resolvent in The-
orem D.7 below.

Consider the two-dimensional single electron in the uniform magnetic field and with a
electrostatic potential VΛ. The Hamiltonian has the form, HΛ =HL +VΛ, on the rectangular
box Λ with the periodic boundary conditions as in Sect. 2, where HL is the Landau Hamil-
tonian (3.1). We also impose the condition of the flux quantization, |Λ|/(2π�2

B) ∈ N. We
assume VΛ ∈ C2(Λ). We denote by Q

(n)

0,Λ the spectral projection onto the n+ 1-th Landau
level whose energy eigenvalue of HL is given by En = (n+ 1/2)�ωc with ωc = eB/me. We
introduce one-parameter families of operators as

HL(β)= e−βρHLe
βρ, HΛ(β)=HL(β)+ VΛ, Q

(n)

0,Λ(β)= e−βρQ
(n)

0,Λe
βρ (D.41)

for β ∈ R. Here the distance function ρ(r) is given in the preceding subsection. We write
HL(β)= H̃L + iβJ , where the operator J is given by (D.4) with A = A0, and

H̃L =HL − �
2β2

2me

(∇ρ)2. (D.42)

Lemma D.3 Let z be a complex number satisfying dist(σ (H̃L), z) ≥ �ωc/4, where σ(H̃L)

is the spectrum of the Hamiltonian H̃L. Then there exists κ(z) ∈ (0,1) which depends only
on z such that the following bound is valid:

‖[z−HL(β)]−1‖ ≤ 8

�ωc

for any real β satisfying |β| ≤ κ(z)�−1
B . (D.43)

Proof Note that, for a vector ϕ in the domain of the Hamiltonian and for a small β ,

‖(H̃L − z+ iβJ )ϕ‖ = ‖[1 + iβJ (H̃L − z)−1](H̃L − z)ϕ‖
≥ [1 − |β|‖J (H̃L − z)−1‖]‖(H̃L − z)ϕ‖
≥ [1 − |β|‖J (H̃L − z)−1‖]dist(σ (H̃L), z)‖ϕ‖
≥ 1

4
�ωc[1 − |β|‖J (H̃L − z)−1‖]‖ϕ‖. (D.44)

Therefore it is sufficient to show |β|‖J (H̃L − z)−1‖< 1/2 for a small β . Since

J = i�2

2me

�ρ − �

me

∇ρ · (p + eA0), (D.45)

one has

‖J (H̃L − z)−1‖ ≤ �
2

2me

‖�ρ‖∞
1

dist(σ (H̃L), z)

+ 2�

me

‖|∇ρ|‖∞ max
s

‖(ps + eA0,s )(H̃L − z)−1‖. (D.46)

The norm of the operator in the second term is evaluated as
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(ϕ, (H̃L − z∗)−1(ps + eA0,s )
2(H̃L − z)−1ϕ)

≤ 2me(ϕ, (H̃L − z∗)−1(H̃L + �
2β2

2me

‖|∇ρ|‖2
∞)(H̃L − z)−1ϕ)

≤ 2me

[
1

dist(σ (H̃L), z)
+ |z| + �

2β2‖|∇ρ|‖2∞/(2me)

dist(σ (H̃L), z)2

]
‖ϕ‖2. (D.47)

Combining this, (D.46) and the assumption on z, the desired condition for β in (D.43) can
be obtained. �

We introduce the integral representation of the projection Q
(n)

0,Λ as

Q
(n)

0,Λ = 1

2πi

∫

γ

dz′ 1

z′ −HL
, (D.48)

where the closed path γ encircles the spectrum of the n + 1-th Landau level. Further we
choose the path γ such that the length of the path is bounded as |γ | ≤ 3�ωc , and that the
distance from the spectrum of the two Hamiltonians HL, H̃L satisfies

dist(γ, σ (HL))≥ �ωc/4 and dist(γ, σ (H̃L))≥ �ωc/4 (D.49)

for any real β satisfying |β|‖|∇ρ|‖∞ ≤ �−1
B . Then, from the above lemma, there exists κn ∈

(0,1) which depends only on the index n such that the representation,

Q
(n)

0,Λ(β)= 1

2πi

∫

γ

dz′ 1

z′ −HL(β)
, (D.50)

is well defined for any β satisfying |β|‖|∇ρ|‖∞ ≤ κn�
−1
B .

Lemma D.4 Assume the above condition |β|‖|∇ρ|‖∞ ≤ κn�
−1
B . Then the following bound

is valid:

‖[Q(n)

0,Λ(β),VΛ]‖ ≤ C
(n)

0,0�B (D.51)

with

C
(n)

0,0 = 48

π

[
�B‖�VΛ‖∞ + 2(4 + √

8n+ 29) max
j=x,y

‖∂jVΛ‖∞
]
, (D.52)

where we have written ∇ = (∂x, ∂y).

Proof Note that

[Q(n)

0,Λ(β),VΛ] = 1

2πi

∫

γ

dz′
[

1

z′ −HL(β)
VΛ − VΛ

1

z′ −HL(β)

]

= 1

2πi

∫

γ

dz′ 1

z′ −HL(β)
[HL(β),VΛ] 1

z′ −HL(β)
. (D.53)

The commutator in the right-hand side is computed as

[HL(β),VΛ] = − �
2

2me

�VΛ − i�

me

∇VΛ · �, (D.54)
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where we have written � = (Πx,Πy) = p + eA0 − i�β∇ρ. From these observations, one
has

‖[Q(n)

0,Λ(β),VΛ]‖

≤ 3�
2ωc

2πme

[
�

2
‖R(β)‖2‖�VΛ‖∞ + ‖R(β)‖ max

�=x,y
‖∂�VΛ‖∞

∑

j=x,y

‖ΠjR(β)‖
]

≤ 48

π

[
�2
B‖�VΛ‖∞ + �

2me

max
�=x,y

‖∂�VΛ‖∞ max
j=x,y

‖ΠjR(β)‖
]
, (D.55)

where we have written R(β)= (z′ −HL(β))
−1 for short, and used the bound (D.43). There-

fore it is sufficient to estimate ‖ΠjR(β)‖. Note that

∑

j=x,y

‖ΠjR(β)ϕ‖2 =
∑

j=x,y

(R(β)ϕ,Π∗
j ΠjR(β)ϕ)

= 2me(R(β)ϕ,HL(β)R(β)ϕ)

+ 2i�β
∑

j=x,y

(R(β)ϕ, (∂jρ)ΠjR(β)ϕ). (D.56)

Further

max
j=x,y

‖ΠjR(β)ϕ‖2 ≤ 2me(‖ϕ‖‖R(β)ϕ‖ + |z′|‖R(β)ϕ‖2)

+ 4�β‖|∇ρ|‖∞‖R(β)ϕ‖ max
j=x,y

‖ΠjR(β)ϕ‖

≤ 16m2
e

�eB
(8n+ 13)‖ϕ‖2 + 32me√

�eB
‖ϕ‖ max

j=x,y
‖ΠjR(β)ϕ‖, (D.57)

where we have used (D.43), |z′| ≤ dist(En, z′)+ En and β‖|∇ρ|‖∞ < �−1
B . Solving this, one

has

‖ΠjR(β)‖ ≤ 4me√
�eB

(4 + √
8n+ 29) forj = x, y. (D.58)

Substituting this into (D.55), the bound (D.51) is obtained. �

Lemma D.5 For any given ε ∈ (0,1), there exists κn,ε ∈ (0,1) such that κn,ε depends only
on ε and the index n of the Landau level, and that, for any real β satisfying |β|‖|∇ρ|‖∞ ≤
κn,ε�

−1
B , the following bounds are valid:

‖Q(n)

0,Λ(β)−Q
(n)

0,Λ‖ ≤ ε (D.59)

and

‖(HL(β)− z)[Q(n)

0,Λ(β)−Q
(n)

0,Λ]‖ ≤ ε�ωc

for z satisfying dist(z,En)≤�Emax (D.60)

with a positive constant �Emax.
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Proof Note that

Q
(n)

0,Λ(β)−Q
(n)

0,Λ = 1

2πi

∫

γ

dz′
[

1

z′ −HL(β)
− 1

z′ −HL

]

= 1

2πi

∫

γ

dz′ 1

z′ −HL(β)
(HL(β)−HL)

1

z′ −HL

= 1

2πi

∫

γ

dz′ 1

z′ −HL(β)

[
−�

2β2

2me

(∇ρ)2 + iβJ

]
1

z′ −HL
(D.61)

for any β satisfying |β| ≤ κn�
−1
B . Therefore the norm of the left-hand side is evaluated as

‖Q(n)

0,Λ(β)−Q
(n)

0,Λ‖

≤ 3�ωc

2π
sup
z′∈Γ

∥∥∥∥
1

z′ −HL(β)

∥∥∥∥

(
�

2β2

2me

‖|∇ρ|‖2
∞

∥∥∥∥
1

z′ −HL

∥∥∥∥ + β

∥∥∥∥J
1

z′ −HL

∥∥∥∥

)

≤ 12

π
(2�2

Bβ
2‖|∇ρ|‖2

∞ + ε ′), (D.62)

where we have used the bound (D.43) and ‖(z′ −HL)
−1‖ ≤ 4/(�ωc), and we have chosen β

so that, for a given small ε′,

|β|
∥∥∥∥J

1

z′ −HL

∥∥∥∥ ≤ ε ′ (D.63)

which can be proved in the same way as in Lemma D.3. The resulting bound (D.62) with a
small β implies the desired bound (D.59).

In order to obtain the second bound, we note that

(HL(β)− z)[Q(n)

0,Λ(β)−Q
(n)

0,Λ]

= 1

2πi

∫

γ

dz′
[
−1 + z′ − z

z′ −HL(β)

]
(HL(β)−HL)

1

z′ −HL
. (D.64)

In the same way as in the above, the norm is estimated as

‖(HL(β)− z)[Q(n)

0,Λ(β)−Q
(n)

0,Λ]‖

≤ 3�ωc

2π

(
9 + 8

�Emax

�ωc

)∥∥∥∥(HL(β)−HL)
1

z′ −HL

∥∥∥∥. (D.65)

Here we have used |z′ − z| ≤ dist(En, z′) + dist(En, z) ≤ �ωc + �Emax. The norm of the
operator in the right-hand side is already estimated in the above. �

We write z=E + iε with E,ε ∈ R.

Lemma D.6 Suppose En−1 + ‖V +
Λ ‖∞ + δ̂−�ωc ≤ E ≤ En+1 − ‖V −

Λ ‖∞ − 2δ̂+�ωc for n =
0,1,2, . . . with some positive constants δ̂± and with E−1 = −∞. Let ϕ be a vector in the
domain of the Hamiltonian. Then the following bound is valid:

‖(HΛ(β)− z)[1 −Q
(n)

0,Λ]ϕ‖ ≥ C
(n)

0,1�ωc‖[1 −Q
(n)

0,Λ]ϕ‖ (D.66)
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for any β satisfying |β|‖|∇ρ|‖∞ ≤ κ ′
n�

−1
B , where

C
(n)

0,1 =
{
δ̂+, for n= 0;
min{δ̂+, δ̂−}/2, for n= 1,2, . . . ,

(D.67)

and

κ ′
n =

⎧
⎪⎨

⎪⎩

√
2δ̂+, for n= 0;

min
{ √

δ̂+ δ̂−
�B‖�ρ‖∞/‖|∇ρ|‖∞+2

√
2n−1

,

√
2δ̂+

}
, for n= 1,2, . . . .

(D.68)

Proof We write ψ = [1 −Q
(n)

0,Λ]ϕ, and decompose the vector ψ into two parts as

ϕ+ =
∑

j>n

Q
(j)

0,Λϕ and ϕ− =
∑

j<n

Q
(j)

0,Λϕ. (D.69)

Then one has

‖ψ‖‖(HΛ(β)− z)ψ‖

≥ Re

(
ϕ+ − ϕ−,

(
HΛ −E − �

2β2

2me

(∇ρ)2 − iε + iβJ

)
ϕ+ + ϕ−

)

≥ �ωcδ̂+‖ϕ+‖2 + �ωcδ̂−‖ϕ−‖2 − 2β Im(ϕ+, Jϕ−), (D.70)

where we have used

En+1 − ‖V −
Λ ‖∞ −E − �

2β2‖|∇ρ|‖2
∞/(2me)≥ δ̂+�ωc (D.71)

and

E − En−1 − ‖V +
Λ ‖∞ ≥ δ̂−�ωc (D.72)

which are easily derived from the assumptions. Clearly, in the case with n = 0, one has
ϕ− = 0, and so the statement holds. For the rest of the cases, we use the following bound:

|(ϕ+, Jϕ−)| ≤ �
2

2me

‖�ρ‖∞‖ϕ+‖‖ϕ−‖ + �

me

|(ϕ+,∇ρ · (p + eA0)ϕ−)|

≤ �
2

2me

‖�ρ‖∞‖ϕ+‖‖ϕ−‖ + �

me

√
(ϕ+, |∇ρ|2ϕ+)(ϕ−, (p + eA0)2ϕ−)

≤
(

�
2

2me

‖�ρ‖∞ + �

√
2En−1

me

‖|∇ρ|‖∞
)

‖ϕ+‖‖ϕ−‖, (D.73)

where we have used (D.45) and the Schwarz inequality. Combining this, (D.70) and the
assumption on β , the desired bound is obtained. �

Let us estimate ‖(HΛ(β)− z)ϕ‖ for a vector ϕ in the domain of the Hamiltonian and for
z ∈ C. We take β satisfying |β|‖|∇ρ|‖∞ ≤ �−1

B min{κn,ε, κ ′
n} for a given ε. Note that

‖Q(n)

0,Λ(HΛ(β)− z)ϕ‖ ≥ ‖e−βρ(HΛ − z)Q
(n)

0,Λe
βρϕ‖

− ‖Q(n)

0,Λ(HΛ(β)− z)ϕ − e−βρ(HΛ − z)Q
(n)

0,Λe
βρϕ‖. (D.74)
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The first term in the right-hand side can be evaluated as

‖e−βρ(HΛ − z)Q
(n)

0,Λe
βρϕ‖ = ‖(En + VΛ − z)e−βρQ

(n)

0,Λe
βρϕ‖

≥ �E‖Q(n)

0,Λ(β)ϕ‖
≥ �E‖Q(n)

0,Λϕ‖ −�E‖[Q(n)

0,Λ(β)−Q
(n)

0,Λ]ϕ‖
≥ �E‖Q(n)

0,Λϕ‖ − ε�E‖ϕ‖, (D.75)

where

�E = inf |En + VΛ − Re z| (D.76)

and we have used the inequality (D.59). The second term in the right-hand side of (D.74)
can be evaluated as

‖Q(n)

0,Λ(HΛ(β)− z)ϕ − e−βρ(HΛ − z)Q
(n)

0,Λe
βρϕ‖

= ‖Q(n)

0,Λ(HΛ(β)− z)ϕ − (HΛ(β)− z)Q
(n)

0,Λ(β)ϕ‖
≤ ‖[Q(n)

0,Λ −Q
(n)

0,Λ(β)](HΛ(β)− z)ϕ‖ + ‖[[Q(n)

0,Λ(β),HΛ(β)]ϕ‖
≤ ‖[Q(n)

0,Λ −Q
(n)

0,Λ(β)](HΛ(β)− z)ϕ‖ + ‖[[Q(n)

0,Λ(β),VΛ]ϕ‖
≤ ε‖(HΛ(β)− z)ϕ‖ +C

(n)

0,0�B‖ϕ‖, (D.77)

we have used the inequalities (D.51) and (D.59). Substituting these bounds into (D.74), one
has

(1 + ε)‖(HΛ(β)− z)ϕ‖ ≥�E‖Q(n)

0,Λϕ‖ − (ε�E +C
(n)

0,0�B)‖ϕ‖. (D.78)

Note that

‖(1 −Q
(n)

0,Λ)(HΛ(β)− z)ϕ‖
≥ ‖[1 −Q

(n)

0,Λ(β)](HΛ(β)− z)ϕ‖ − ‖[Q(n)

0,Λ(β)−Q
(n)

0,Λ](HΛ(β)− z)ϕ‖
≥ ‖(HΛ(β)− z)[1 −Q

(n)

0,Λ(β)]ϕ‖
− ‖[Q(n)

0,Λ(β),HΛ(β)]ϕ‖ − ‖[Q(n)

0,Λ(β)−Q
(n)

0,Λ](HΛ(β)− z)ϕ‖
≥ ‖(HΛ(β)− z)[1 −Q

(n)

0,Λ]ϕ‖
− ‖(HΛ(β)− z)[Q(n)

0,Λ(β)−Q
(n)

0,Λ]ϕ‖ − ‖[Q(n)

0,Λ(β),VΛ]ϕ‖
− ‖[Q(n)

0,Λ(β)−Q
(n)

0,Λ](HΛ(β)− z)ϕ‖. (D.79)

Using the inequalities (D.51), (D.59), (D.60) and (D.66) for this right-hand side, one has

(1 + ε)‖(HΛ(β)− z)ϕ‖
≥ C

(n)

0,1�ωc‖[1 −Q
(n)

0,Λ]ϕ‖ − (ε�ωc + ε‖VΛ‖∞ +C
(n)

0,0�B)‖ϕ‖. (D.80)

Combining this with the above inequality (D.78), one has
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(1 + ε)

(
1

�E
+ 1

C
(n)

0,1�ωc

)
‖(HΛ(β)− z)ϕ‖

≥
{

1 − ε

[
1 + 1

C
(n)

0,1

(1 + ‖VΛ‖∞
�ωc

)

]
−C

(n)

0,0�B

(
1

�E
+ 1

C
(n)

0,1�ωc

)}
‖ϕ‖. (D.81)

Assume that the energy E satisfies the condition in Lemma D.6 with the positive con-
stants δ̂± which are independent of the strength B of the uniform magnetic field. Under this
assumption, C(n)

0,1 and κ ′
n in Lemma D.6 can be chosen to be independent of B except for a

small B . Further assume that �E satisfies �E ≥�E > 0 with some constant �E which is
independent of B . Then there exists B(n)

0,1 such that, for any B >B
(n)

0,1 ,

C
(n)

0,0�B [(�E)−1 + (C
(n)

0,1�ωc)
−1] ≤ 1/3. (D.82)

Moreover we can choose ε satisfying

ε{1 + (C
(n)

0,1)
−1[1 + ‖VΛ‖∞/(�ωc)]} ≤ 1/3. (D.83)

Substituting these into the above bound (D.81), one has

C
(n)

0,2(�E)−1‖(HΛ(β)− z)ϕ‖ ≥ ‖ϕ‖ for any B ≥ B
(n)

0,1, (D.84)

where the positive constant C(n)

0,2 depends only on the index n. Therefore a similar decay
estimate for the resolvent is obtained in the same way as in Theorem D.2. We summarize
the result as

Theorem D.7 Let v,w be bounded functions with a compact support, and suppose that
the boundary of the region suppv is smooth. Write z = E + iε with E,ε ∈ R. Assume that
the energy E satisfies the condition in Lemma D.6 with the positive constants δ̂± which are
independent of the strength B of the uniform magnetic field. Further assume that �E of
(D.76) satisfies �E ≥ �E > 0 with some constant �E which is independent of B . Then
there exist B(n)

0,1 and κ̃n which depend only on the index n of the Landau level such that

‖v(HΛ −E − iε)−1w‖ ≤ C
(n)

0,3

�E
‖v‖∞‖w‖∞ exp[−κ̃n�

−1
B r] for any B ≥ B

(n)

0,1 . (D.85)

Here r = dist(suppv, suppw) and the positive constant C(n)

0,3 depends only on the index n.

Appendix E: Proof of Lemma 5.1

The first inequality (5.18) can be obtained as

‖αi(pi + eAi)Rψ‖2

= (ψ,R∗(pi + eAi)|αi |2(pi + eAi)Rψ)

≤ ‖αi‖2
∞(ψ,R∗(pi + eAi)

2Rψ)

≤ 2me‖αi‖2
∞{‖R‖ + [|E| + ‖(V −

0 + V −
ω )‖∞]‖R‖2}‖ψ‖2 (E.1)
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for i = x, y and for any vector ψ . Here we have used
∑

i=x,y

R∗(pi + eAi)
2R ≤ 2meR

∗[Hω + ‖(V −
0 + V −

ω )‖∞]R

≤ me{(R +R∗)+ 2[|E| + ‖(V −
0 + V −

ω )‖∞]R∗R}. (E.2)

In order to get the second inequality, we first note that

‖(pi + eAi)R(p + eA) · αϕ‖2

= (ϕ,α · (p + eA)R∗(pi + eAi)
2R(p + eA) · αϕ)

≤me(ϕ,α · (p + eA)(R +R∗)(p + eA) · αϕ)
+ 2me[|E| + ‖(V −

0 + V −
ω )‖∞](ϕ,α · (p + eA)R∗R(p + eA) · αϕ). (E.3)

Using the Schwarz inequality, one has

(ϕ,α · (p + eA)R∗R(p + eA) · αϕ)
≤ ‖|α|‖∞‖ϕ‖

√
(ϕ,α · (p + eA)R∗R(p + eA)2R∗R(p + eA) · αϕ). (E.4)

Combining this with the inequality (E.2), one obtains the bound (5.20). Similarly,

|(ϕ,α · (p + eA)R(p + eA) · αϕ)|
≤ ‖|α|‖∞‖ϕ‖

√
(ϕ,α · (p + eA)R∗(p + eA)2R(p + eA) · αϕ). (E.5)

Combining this with the inequality (E.2), one obtains

|(ϕ,α · (p + eA)R(p + eA) · αϕ)|2
≤me‖|α|‖2

∞‖ϕ‖2{|(ϕ,α · (p + eA)R(p + eA) · αϕ)|
+ [|E| + ‖(V −

0 + V −
ω )‖∞](ϕ,α · (p + eA)R∗R(p + eA) · αϕ)}

≤ 2me‖|α|‖2
∞‖ϕ‖2|(ϕ,α · (p + eA)R(p + eA) · αϕ)|

+ 4m2
e‖|α|‖4

∞fE,R(1 + fE,R)‖ϕ‖4, (E.6)

where we have used the bound (5.20). Solving this quadratic inequality, one has

|(ϕ,α · (p + eA)R(p + eA) · αϕ)| ≤ 2me‖|α|‖2
∞(1 + fE,R)‖ϕ‖2. (E.7)

Substituting this and (5.20) into the right-hand side of (E.3), the desired bound (5.19) is
obtained.

Appendix F: Proofs of Lemmas 6.2 and 6.3

For the purpose of this appendix, we prepare the following three lemmas:

Lemma F.1

(i) Let �, �′ be odd integers larger than 1 such that �′ is a multiple of �. Let Agood be
the event that no two disjoint γ -bad boxes of size 3� with center in Γ� ∩Λ5�′(z) exist.
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Assume Prob[Λ3�(· · ·) is γ -good] ≥ 1 − η with a small η > 0. Then Prob(Agood)≥ 1 −
(5�′/�)4η2.

(ii) Assume that the event Agood occurs. Let u,v ∈ Γ� such that Λ�(u) ⊂ Λ�′(z) and that
Λ�(v)∩ (Λ3�′(z)\Λδ

3�′(z)) �= ∅. Then

‖χ�(u)R5�′,z(E + iε)χ�(v)‖ ≤ (8e−γ �)�
′/�−4‖R5�′,z(E + iε)‖. (F.1)

Proof The statement (i) follows from elementary combinatorics.
(ii) Using the geometric resolvent equation,

χδ
3�(u)R5�′,z =R3�,uχ

δ
3�(u)+R3�,uW̃

δ
3�(u)R5�′,z, (F.2)

one has

χ�(u)R5�′,zχ�(v) = χ�(u)χδ
3�(u)R5�′,zχ�(v)

= χ�(u)R3�,uW̃
δ
3�(u)R5�′,zχ�(v)

= χ�(u)R3�,uW̃
δ
3�(u)

∑

ũ∈Γ�∩(Λ3�(u)\Λ�(u))

χ�(ũ)R5�′,zχ�(v), (F.3)

where we have written R�,z for R�,z(E + iε) for short. We can choose u1 from the set of ũ
so that ‖χ�(ũ)R5�′,zχ�(v)‖ becomes maximal. Thus one has

‖χ�(u)R5�′,zχ�(v)‖ ≤ 8e−γ �‖χ�(u1)R5�′,zχ�(v)‖ (F.4)

when Λ3�(u) is γ -good. Since the norm of the operator in the right-hand side can
be estimated in the same way, one can repeat this procedure and construct the points,
u1,u2, . . . ,uk ∈ Γ�, as long as Λ3�(uk−1) is γ -good and does not hit Λ�(v) or ∂Λ5�′(z).

The same type of estimate can be applied to v as a starting point as follows: Using the
adjoint of the geometric resolvent equation,

R5�′,zχ
δ
3�(v)= χδ

3�(v)R3�,v +R5�′,z(W̃
δ
3�(v))

∗R3�,v, (F.5)

one has

χ�(uk)R5�′,zχ�(v) = χ�(uk)R5�′,zχ
δ
3�(v)χ�(v)

= χ�(uk)R5�′,z(W̃
δ
3�(v))

∗R3�,vχ�(v)

= χ�(uk)R5�′,z
∑

ṽ∈Γ�∩(Λ3�(v)\Λ�(v))

χ�(ṽ)(W̃ δ
3�(v))

∗R3�,vχ�(v). (F.6)

Thus

‖χ�(uk)R5�′,zχ�(v)‖ ≤ 8e−γ �‖χ�(uk)R5�′,zχ�(v1)‖ (F.7)

when Λ3�(v) is γ -good. In the same way, the procedure yields the points, v1,v2, . . . ,vj , and
one obtains the bound,

‖χ�(u)R5�′,zχ�(v)‖ ≤ (8e−γ �)k+j‖χ�(uk)R5�′,zχ�(vj )‖ ≤ (8e−γ �)k+j‖R5�′,z‖. (F.8)

This process moves in steps of �. The assumption that Agood occurs implies that there may be
only one cluster of overlapping γ -bad boxes. The diameter of such a bad cluster is at most
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5�. From these observations, one has that k+ j ≥ |u − v|/�− 4 iterations can be performed
before the process stops on the both sides. Since |u−v| ≥ �′ from the assumption, the desired
bound (F.1) is obtained. When the process hits the boundary of Λ5�′(z) without hitting a γ -
bad box, we have �k ≥ 2�′ or �j ≥ �′. Therefore the bound (F.1) remains valid. �

Lemma F.2 Let �, �′ be odd integers larger than 1 such that �′ is a multiple of � and satisfies
�′ > 4�. Assume that the event Agood given in the preceding lemma occurs. Then

‖χ�′(z)R3�′,z(W̃
δ
3�′(z))

∗‖

≤ 6

(
�′

�

)3

(8e−γ �)�
′/�−4[f4(|E|,‖R5�′,z‖)+ f5(|E|,‖R3�′,z‖)]‖R5�′,z‖, (F.9)

where the functions, f4 and f5, are given by

f4(|E|,‖R‖) = 2Cδ,ω + 16�
2

me

max
m,n=x,y

{‖∂mφn,3�′(z)‖∞}(1 + fE,R)

+ 2
√

2

(
�√
me

)3

max
n=x,y

{‖�φn,3�′(z)‖∞}(1 + fE,R)
1/2‖R‖1/2 (F.10)

and

f5(|E|,‖R‖) = C2
δ,ω‖R‖ + 2

√
2�√
me

Cδ,ω[‖|∇χδ
3�′(z)|‖∞

+ 2 max
m=x,y

{‖∂mχδ
3�′(z)‖∞}](1 + fE,R)

1/2‖R‖1/2

+ 4�
2

me

max
m=x,y

{‖∂mχδ
3�′(z)‖∞}‖|∇χδ

3�′(z)|‖∞(1 + fE,R). (F.11)

Here

Cδ,ω = �
2

2me

‖�χδ
3�′(z)‖∞ + ‖Vω‖∞, φi,3�′(z)= χδ

3�′(z)∂iχ
δ
3�′(z), (F.12)

and the function fE,R is given by (5.21).

Proof Using the adjoint of the geometric resolvent equation (F.5), one has

χ�′(z)R5�′,zχ
δ
3�′(z)(W̃

δ
3�′(z))

∗

= χ�′(z)R3�′,z(W̃
δ
3�′(z))

∗ + χ�′(z)R5�′,z(W̃
δ
3�′(z))

∗R3�′,z(W̃
δ
3�′(z))

∗. (F.13)

Therefore

‖χ�′(z)R3�′,z(W̃
δ
3�′(z))

∗ϕ‖
≤ ‖χ�′(z)R5�′,zχ

δ
3�′(z)(W̃

δ
3�′(z))

∗ϕ‖
+ ‖χ�′(z)R5�′,z(W̃

δ
3�′(z))

∗R3�′,z(W̃
δ
3�′(z))

∗ϕ‖ (F.14)

for any vector ϕ in the domain of the operator p + eA.
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Let us estimate the first term in the right-hand side. Using the expression (5.9) of W(· · ·),
one has

‖χ�′(z)R5�′,zχ
δ
3�′(z)(W̃

δ
3�′(z))

∗ϕ‖
≤ ‖χ�′(z)R5�′,zχ

δ
3�′(z)υ3�′(z)ϕ‖

+ �

me

∑

i=x,y

‖χ�′(z)R5�′,zφi,3�′(z)(pi + eAi)ϕ‖,

(F.15)

where we have written

υ3�′(z)= �
2

2me

�χδ
3�′(z)+ δVω,3�′,3�′χ

δ
3�′(z). (F.16)

Using the bound (F.1), the first term in the right-hand side can be estimated as

‖χ�′(z)R5�′,zχ
δ
3�′(z)υ3�′(z)ϕ‖ ≤

∑

u,v

‖χ�(u)R5�′,zχ�(v)‖‖υ3�′(z)‖∞‖ϕ‖

≤ 12

(
�′

�

)3

(8e−γ �)�
′/�−4Cδ,ω‖R5�′,z‖‖ϕ‖. (F.17)

The summand in the right-hand side in (F.15) can be written as

‖χ�′(z)R5�′,zφi,3�′(z)(pi + eAi)ϕ‖
= ‖χ�′(z)R5�′,zW(φi,3�′(z))R5�′,z(pi + eAi)ϕ‖

≤ �
2

2me

‖χ�′(z)R5�′,z(�φi,3�′(z))R5�′,z(pi + eAi)ϕ‖

+ �

me

∑

j=x,y

‖χ�′(z)R5�′,z(∂jφi,3�′(z))(pj + eAj )R5�′,z(pi + eAi)ϕ‖

≤ 6

(
�′

�

)3

(8e−γ �)�
′/�−4‖R5�′,z‖

[
�

2

me

max
n=x,y

{‖�φn,3�′(z)‖∞}‖R5�′,z(pi + eAi)ϕ‖.

+ 4�

me

max
m,n=x,y

{‖∂mφn,3�′(z)‖∞}‖(pj + eAj )R5�′,z(pi + eAi)ϕ‖
]
, (F.18)

where we have used (5.9) and (F.1) again. From (5.19) and (5.20) with α = (1,0) or (0,1),
one has

‖R(pi + eAi)ϕ‖ ≤ √
2me(1 + fE,R)

1/2‖R‖1/2‖ϕ‖ (F.19)

and

‖(pj + eAj )R(pi + eAi)ϕ‖ ≤ 2me(1 + fE,R)‖ϕ‖. (F.20)

Combining these, (F.15), (F.17) and (F.18), we have
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‖χ�′(z)R5�′,zχ
δ
3�′(z)(W̃

δ
3�′(z))

∗ϕ‖

≤ 6

(
�′

�

)3

(8e−γ �)�
′/�−4f4(|E|,‖R5�′,z‖)‖R5�′,z‖‖ϕ‖. (F.21)

Next let us estimate the second term in the right-hand side of (F.14). Note that

‖(W̃ δ
3�′(z))

∗R3�′,z(W̃
δ
3�′(z))

∗ϕ‖

≤ C2
δ,ω‖R3�′,z‖‖ϕ‖ + �

me

Cδ,ω‖R3�′,z(p + eA) · (∇χδ
3�′(z))ϕ‖

+ �

me

Cδ,ω max
m=x,y

{‖∂mχδ
3�′(z)‖∞}

∑

i=x,y

‖(pi + eAi)R3�′,z‖‖ϕ‖

+ �
2

m2
e

max
m=x,y

{‖∂mχδ
3�′(z)‖∞}

×
∑

i=x,y

‖(pi + eAi)R3�′,z(p + eA) · (∇χδ
3�′(z))ϕ‖, (F.22)

where we have used (5.9). Thus we have

‖χ�′(z)R5�′,z(W̃
δ
3�′(z))

∗R3�′,z(W̃
δ
3�′(z))

∗ϕ‖

≤ 6

(
�′

�

)3

(8e−γ �)�
′/�−4f5(|E|,‖R3�′,z‖)‖R5�′,z‖‖ϕ‖ (F.23)

in the same way. Substituting this and (F.21) into (F.14), the desired bound (F.9) is ob-
tained. �

Similarly, one has the following lemma:

Lemma F.3 Let �, �′ be odd integers larger than 1 such that �′ is a multiple of � and satisfies
�′ > 4�. Assume that the event Agood given in Lemma F.1 occurs. Then

‖W̃ δ
3�′(z)R3�′,zχ�′(z)‖

≤ 6

(
�′

�

)3

(8e−γ �)�
′/�−4[f6(|E|,‖R5�′,z‖)+ f5(|E|,‖R3�′,z‖)]‖R5�′,z‖, (F.24)

where the function f6 is given by

f6(|E|,‖R‖) = 2Cδ,ω + 8�
2

me

max
m=x,y

{‖|∇φm,3�′(z)|‖∞}(1 + fE,R)

+ 2
√

2

(
�√
me

)3

max
n=x,y

{‖�φn,3�′(z)‖∞}(1 + fE,R)
1/2‖R‖1/2. (F.25)

Proof Using the geometric resolvent equation, one has

W̃ δ
3�′(z)χ

δ
3�′(z)R5�′,zχ�′(z)

= W̃ δ
3�′(z)R3�′,zχ�′(z)+ W̃ δ

3�′(z)R3�′,zW̃
δ
3�′(z)R5�′,zχ�′(z). (F.26)
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Therefore

‖W̃ δ
3�′(z)R3�′,zχ�′(z)‖ ≤ ‖W̃ δ

3�′(z)χ
δ
3�′(z)R5�′,zχ�′(z)‖

+ ‖W̃ δ
3�′(z)R3�′,zW̃

δ
3�′(z)R5�′,zχ�′(z)‖. (F.27)

Since the second term in the right-hand side can be estimated in the same way as in the proof
of the preceding lemma, it is enough to estimate the first term. Using (5.9), one has

‖W̃ δ
3�′(z)χ

δ
3�′(z)R5�′,zχ�′(z)‖

≤ ‖υ3�′(z)χδ
3�′(z)R5�′,zχ�′(z)‖

+ �

me

∑

i=x,y

‖(pi + eAi)(∂iχ
δ
3�′(z))χ

δ
3�′(z)R5�′,zχ�′(z)‖. (F.28)

The first term in the right-hand side can be estimated by using the bound (F.1). The operators
in the sum in the right-hand side can be written as

(pi + eAi)φi,3�′(z)R5�′,zχ�′(z)

= (pi + eAi)R5�′,zW(φi,3�′(z))R5�′,zχ�′(z)

= �
2

2me

(pi + eAi)R5�′,z(�φi,3�′(z))R5�′,zχ�′(z)

− i�

me

(pi + eAi)R5�′,z(p + eA) · (∇φi,3�′(z))R5�′,zχ�′(z), (F.29)

where we have used (5.9) again. Similarly the norm of the operators in this right-hand side
can be estimated by using (5.19), (E.1) and (F.1). �

Proof of Lemma 6.2 Assume that the event Agood given in Lemma F.1 occurs. Then, from
the preceding three lemmas, one has

‖χ�′R3�,z(W̃
δ
3�′(z))

∗‖ ≤ Const × (�′)3 exp[−�′{γ (1 − 4�/�′)− 3 log 2/�}]
× |E|(‖R3�,z‖ + ‖R5�,z‖)‖R5�,z‖ (F.30)

and

‖W̃ δ
3�′(z)R3�,zχ�′ ‖ ≤ Const × (�′)3 exp[−�′{γ (1 − 4�/�′)− 3 log 2/�}]

× |E|(‖R3�,z‖ + ‖R5�,z‖)‖R5�,z‖ (F.31)

with the probability larger than 1 − (5�′/�)4η2 for a large |E| and for large ‖R3�,z‖, ‖R5�,z‖.
In the Wegner estimate (A.38), we choose

(δE)−1 = CWK3‖g‖∞|Λ5�′ | × 4(�′)ξ . (F.32)

Then, for q = 3,5, one has

‖Rq�,z‖ ≤ (δE)−1 (F.33)
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with the probability larger than 1 − (�′)−ξ /4. Clearly, one has

‖Rq�,z‖ ≤ Const ×K3(�
′)ξ+2 (F.34)

for a large �′. Since the probability that each event occurs is larger than 1 − (�′)−ξ /4, the
probability that the two events simultaneously occur is larger than 1 − (�′)−ξ /2.

From these observations, the right-hand side of (F.31) can be bounded from above by

exp[−�′{γ (1 − 4�/�′)− 3 log 2/�− log(Const ×K2
3 |E|)/�′ − (2ξ + 7) log�′/�′}] (F.35)

with the probability larger than 1 − (5�′/�)4η2 − (�′)−ξ /2 for a large |E| and for a large �′.
Since one has

3 log 2

�
+ log(Const ×K2

3 |E|)
�′ ≤ log(c0K

2
3 |E|)

�
(F.36)

with a positive constant c0, the proof of the lemma is completed. �

Proof of Lemma 6.3 Take �′ = �k+1 and �= �k in Lemma 6.2, and assume that Λ3�k (· · ·) is
a γk-good box with the probability larger than 1 − η with η = (�k)

−ξ . From the definition
(6.8) of �k+1, we have

�k+1

�k
= [�1/2

k ]≥odd = �
1/2
k + δ�k with 0 ≤ δ�k < 2. (F.37)

Using this identity, η′ of (6.6) can be written as

η′ = ηk+1 = 54

(
�k+1

�k

)4

(�k)
−2ξ + 1

2
(�k+1)

−ξ

= (�k+1)
−ξ

[
54

(
�k+1

�k

)4+ξ

(�k)
−ξ + 1

2

]

= (�k+1)
−ξ

[
54(�k)

2−ξ/2

(
1 + δ�k

�
1/2
k

)4+ξ

+ 1

2

]
. (F.38)

Therefore, if the initial scale �0 satisfies

54(�0)
2−ξ/2(1 + 2�−1/2

0 )4+ξ ≤ 1/2, (F.39)

then we have ηk+1 ≤ (�k+1)
−ξ . Actually this inequality holds for a large �0 because of the

assumption, ξ > 4.
Next we define γk inductively according to (6.7) as

γk+1 = γk(1 − 4�k/�k+1)− dk (F.40)

with

dk = log(c0K
2
3 |E|)

�k
+ (2s + 7) log�k+1

�k+1
. (F.41)
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One can easily find

γk+1 =
(

1 − 4�k
�k+1

)(
1 − 4�k−1

�k

)
· · ·

(
1 − 4�1

�2

)(
1 − 4�0

�1

)
γ0

− dk −
(

1 − 4�k
�k+1

)
dk−1 −

(
1 − 4�k

�k+1

)(
1 − 4�k−1

�k

)
dk−2 · · ·

−
(

1 − 4�k
�k+1

)(
1 − 4�k−1

�k

)
· · ·

(
1 − 4�1

�2

)
d0

≥ γ0

k∏

j=0

(
1 − 4�j

�j+1

)
−

k∑

j=0

dj . (F.42)

Note that

�k ≥ (�k−1)
3/2 ≥ (�k−2)

(3/2)2 ≥ · · · ≥ (�0)
(3/2)k , (F.43)

and one has

�k

�k+1
≤ 1

�
1/2
k

≤ exp

[
−1

2
(3/2)k log�0

]
. (F.44)

Using this inequality, the product in the right-hand side of (F.42) can be evaluated as

k∏

j=0

(
1 − 4�j

�j+1

)
≥

k∏

j=0

{
1 − 4 exp

[
−1

2
(3/2)j log�0

]}
. (F.45)

This right-hand side is uniformly bounded from below by some positive constant if �0 > 16.
The sum of dk in the right-hand side of (F.42) can also be evaluated as

k∑

j=0

dj ≤ log(c0K
2
3 |E|)

k∑

j=0

exp[−(3/2)j log�0]

+ (2s + 7) log�0

k∑

j=0

(3/2)j+1 exp[−(3/2)j+1 log�0]. (F.46)

This right-hand side becomes small for B large enough because of K3 = O(B) or O(1),
|E| = O(B) and �0 = O(B1/2). As a result, γk is uniformly bounded from below by some
positive constant γ∞. �

Appendix G: Proof of Lemma 9.2

The difference between (9.18) and (9.19) is estimated by

�I := 1

V�

(∑

a∈Λ�

∑

u∈(Zε2)∗\Λ∗
�

∑

v,w

+
∑

a∈Z2
ε\Λ�

∑

u∈Λ∗
�

∑

v,w

|tu,vtv,wtw,u||Su,v,w,u|
)
. (G.1)

In the same way as in the proof of Theorem 8.5, it is sufficient to show E[�I ] → 0 as
�→ ∞.
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To begin with, we note that

|Trχε(u)PFχε(v)PFχε(w)PFχε(u)|
≤ √

Trχε(u)PFχε(v)PFχε(v)PFχε(u)
√

Trχε(u)PFχε(w)PFχε(w)PFχε(u)

≤ ‖χε(u)PFχε(v)‖‖χε(u)PFχε(w)‖
√

Trχε(v)PFχε(v)
√

Trχε(w)PFχε(w)

≤ Const × ‖χε(u)PFχε(v)‖‖χε(u)PFχε(w)‖, (G.2)

where we have used (8.27). Further, Schwarz’s inequality yields

E[‖χε(u)PFχε(v)‖‖χε(u)PFχε(w)‖]
≤ E[‖χε(u)PFχε(v)‖2]1/2E[‖χε(u)PFχε(w)‖2]1/2

≤ E[‖χε(u)PFχε(v)‖]1/2E[‖χε(u)PFχε(w)‖]1/2, (G.3)

where we have used ‖χε(u)PFχε(v)‖ ≤ 1 for any u,v. From these observations and the
decay bound (7.17) for the Fermi sea projection, it is sufficient to estimate

1

V�

(∑

a∈Λ�

∑

u∈(Z2
ε )

∗\Λ∗
�

∑

v,w

+
∑

a∈Z2
ε\Λ�

∑

u∈Λ∗
�

∑

v,w

|tu,vtv,wtw,u|e−μ|u−v|/2e−μ|u−w|/2

)
. (G.4)

Consider first the case with |u − a| ≤ ε1�
δ with δ ∈ (0,1). Using the bound,

|tu,vtv,wtw,u| ≤ 23 |u − v||u − w|
|u − a|2 , (G.5)

which is derived from (9.5), we have

∑

v,w

|tu,vtv,wtw,u|e−μ|u−v|/2e−μ|v−w|/2 < Const × 1

|u − a|2 . (G.6)

Therefore the corresponding error is estimated by

1

�2

( ∑

a∈Λ�,u∈(Z2
ε )

∗\Λ∗
�
:

|u−a|≤ε1�
δ

+
∑

a∈Z2
ε\Λ�,u∈Λ∗

�
:

|u−a|≤ε1�
δ

1

|u − a|2
)

≤ Const × � · �δ(Const + Const × log�)

�2
. (G.7)

This vanishes as �→ ∞.
When |u − a| > ε1�

δ , we further decompose it into two cases: (i) both v and w fall into
inside the ball with radius |u − a| around u, i.e., |v − u| < |u − a| and |w − u| < |u − a|,
(ii) one of v or w falls into outside the ball, i.e., |v − u| ≥ |u − a| or |w − u| ≥ |u − a|. The
latter contribution is exponentially small in �δ . Actually, one has

∑

v,w satisfy(ii)

|tu,vtv,wtw,u|e−μ|u−v|/2e−μ|u−w|/2

≤ 23

[ ∑

v:|v−u|≥|u−a|,
w

+
∑

w:|w−u|≥|u−a|,
v

e−μ|u−v|/2e−μ|u−w|/2

]

≤ Const × e−μ′ |u−a| (G.8)



924 T. Koma

with a positive constant μ′.
Finally, consider the former case (i). To begin with, we note that

tu,vtv,wtw,u = 2i{sin∠(u,a,v)+ sin∠(v,a,w)+ sin∠(w,a,u)}. (G.9)

We write α = ∠(u,a,v), β = ∠(v,a,w) and γ = ∠(w,a,u) for short. In this case, one
notices that α,β ∈ (−π/2,π/2) and α + β + γ = 0. From these, one has

| sinα + sinβ + sinγ | ≤ 2

(
| sinα| sin2 β

2
+ | sinβ| sin2 α

2

)

≤ 2(| sinα| sin2 β + | sinβ| sin2 α)

≤ 2

|u − a|3 (|u − v||w − u|2 + |v − u|2|w − u|), (G.10)

where we have used

| sinα| ≤ |v − u|
|u − a| and | sinβ| ≤ |w − u|

|u − a| (G.11)

for getting the third inequality. From these observations, we obtain

∑

v,w

|tu,vtv,wtw,u|e−μ|u−v|/2e−μ|u−w|/2 ≤ Const × 1

|u − a|3 . (G.12)

The corresponding contribution is estimated by

1

�2

( ∑

a∈Λ�,u∈(Z2
ε )

∗\Λ∗
�
:

|u−a|>ε1�
δ

+
∑

a∈Z2
ε\Λ�,u∈Λ∗

�
:

|u−a|>ε1�
δ

1

|u − a|3
)

≤ Const

�δ
. (G.13)

This vanishes as �→ ∞.

Appendix H: Proof of Lemma 9.7

In order to prove Lemma 9.7, we introduce a partition {χδ
b (u)}u of unity and prepare

Lemma H.1 below. Here χδ
b (u) are C2 positive functions with a compact support such that∑

u χ
δ
b (u)= 1. Let χ̃b(u) denote the characteristic function of the support of χδ

b (u).

Lemma H.1 The following bound is valid:

‖(ps + eAs)χ
δ
b (u)R(z)χε(v)‖ ≤ [Const + (2me|z|)1/2]‖χ̃b(u)R(z)χε(v)‖

+ √
2me‖χδ

b (u)R(z)χε(v)‖1/2, (H.1)

where the positive constant depends only on the strengths of the potentials, V0,Vω and on
the cutoff functions χδ

b (u).
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Proof Let ϕ be a vector on R2. Then one has

(ϕ,χε(v)R∗(z)χδ
b (u)(ps + eAs)

2χδ
b (u)R(z)χε(v)ϕ)

≤ 2me(‖V0‖∞ + ‖Vω‖∞)‖χδ
b (u)R(z)χε(v)ϕ‖2

+ 2me(ϕ,χε(v)R∗(z)χδ
b (u)Hωχ

δ
b (u)R(z)χε(v)ϕ) (H.2)

by using the inequality (ps + eAs)
2/(2me) ≤ Hω + ‖V0‖∞ + ‖Vω‖∞. Further, the second

term in the right-hand side is evaluated as

2me(ϕ,χε(v)R∗(z)χδ
b (u)Hωχ

δ
b (u)R(z)χε(v)ϕ)

≤ 2me|z|‖χδ
b (u)R(z)χε(v)ϕ‖2

+ 2�

∑

s=x,y

‖[∂sχδ
b (u)]R(z)χε(v)ϕ‖‖χδ

b (u)(ps + eAs)R(z)χε(v)ϕ‖

+ �
2‖χδ

b (u)R(z)χε(v)ϕ‖‖[�χδ
b (u)]R(z)χε(v)ϕ‖

+ 2me‖χδ
b (u)R(z)χε(v)ϕ‖‖χδ

b (u)χε(v)ϕ‖ (H.3)

by using

Hωχ
δ
b (u)= − i�

me

∇χδ
b (u) · (p + eA)− �

2

2me

�χδ
b (u)+ χδ

b (u)Hω. (H.4)

Combing these two bounds, we obtain

‖(ps + eAs)χ
δ
b (u)R(z)χε(v)‖2

≤
[

2me(‖V0‖∞ + ‖Vω‖∞ + |z|)+ 2�
2

∑

s=x,y

‖∂sχδ
b (u)‖2

∞ + �
2‖�χδ

b (u)‖∞
]

× ‖χ̃b(u)R(z)χε(v)‖2

+ 2�

∑

s=x,y

‖∂sχδ
b (u)‖∞‖χ̃b(u)R(z)χε(v)‖‖(ps + eAs)χ

δ
b (u)R(z)χε(v)‖

+ 2me‖χδ
b (u)R(z)χε(v)ϕ‖‖χδ

b (u)χε(v)‖. (H.5)

Solving this quadratic inequality and using the inequality
√
a + b ≤ √

a + √
b for a, b ≥ 0,

the desired bound is obtained. �

Proof of Lemma 9.7 Note that

E[|I(PF;Ω,�P)− I(PF,Λ;Ω)|] = E[|I(PF;Ω,�P)− I(PF,Λ;Ω,�P)|I(MΛ)]
+ E[|I(PF;Ω,�P)− I(PF,Λ;Ω,�P)|I(Mc

Λ)], (H.6)

where MΛ is the event which was introduced in the proof of Lemma 8.1, and I(A) is the
indicator function of an event A. The second term in the right-hand side is vanishing in the
limit L ↑ ∞ as
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E[|I(PF;Ω,�P)− I(PF,Λ;Ω)|I(Mc
Λ)]

≤ E[|I(PF;Ω,�P)− I(PF,Λ;Ω)|2]1/2E[I(Mc
Λ)]1/2

≤ Const ×L−2[κ(ξ+2)−3]/6, (H.7)

where we have used Schwarz’s inequality for getting the first inequality, and we have used12

Lemma 8.4 and Prob(Mc
Λ)≤ Const ×L−2[κ(ξ+2)−3]/3 for the second inequality.

In order to estimate the first term in the right-hand side of (H.6), we first note that

TrχΩPF[[PF, x], [PF, y]]χΩ = TrχΩ(PFxPFyPF − PFyPFxPF)χΩ. (H.8)

We want to rewrite this right-hand side. We have

TrχΩPFxPFyPFχΩ = TrχΩPFx(χ
δ
Λ + 1 − χδ

Λ)PFy(χ
δ
Λ + 1 − χδ

Λ)PFχΩ

= TrχΩPFxχ
δ
ΛPFyχ

δ
ΛPFχΩ + corrections. (H.9)

The contributions from the corrections decay exponentially in the distance between Ω and
the support of 1−χδ

Λ by the bound (7.17) for the Fermi sea projection PF. The rest is written

TrχΩPFxχ
δ
ΛPFyχ

δ
ΛPFχΩ = 1

2πi

∫
dzTrχΩR(z)xχ

δ
ΛPFyχ

δ
ΛPFχΩ. (H.10)

Note that one has

χΩR(z) = χΩχ
δ
ΛR(z)= χΩRΛ(z)χ

δ
Λ + χΩRΛ(z)W̃ (χδ

Λ)R(z) (H.11)

from the geometric resolvent equation, χδ
ΛR(z) = RΛ(z)χ

δ
Λ + RΛ(z)W̃ (χδ

Λ)R(z), where
W̃ (χδ

Λ) = W(χδ
Λ) + (Ṽω,Λ − Vω)χ

δ
Λ, and Ṽω,Λ is the slightly modified potential near the

boundary of Λ. (The precise definition of Ṽω,Λ is given in Sect. 2.) The contribution from
the second term in the right-hand side of (H.11) is

1

2πi

∫
dzTrχΩRΛ(z)W̃ (χδ

Λ)R(z)xχ
δ
ΛPFyχ

δ
ΛPFχΩ. (H.12)

The integrand is estimated by

∑

u:sb(u)∩Ω �=∅

∑

v,w

|Trχb(u)RΛ(z)W̃ (χδ
Λ)R(z)xχ

δ
Λχb(v)PFχb(w)yχδ

ΛPFχb(u)|. (H.13)

For any bounded operators A,B ,

|TrAχb(v)PFχb(w)B| ≤ √
TrAχb(v)PFχb(v)A∗ · √TrB∗χb(w)PFχb(w)B

≤ Const × ‖A‖‖B‖, (H.14)

where we have used the bound (8.27). Using this inequality, one has

|Trχb(u)RΛ(z)W̃ (χδ
Λ)R(z)xχ

δ
Λχb(v)PFχb(w)yχδ

ΛPFχb(u)|
≤ Const × ‖χb(u)RΛ(z)W̃ (χδ

Λ)R(z)xχ
δ
Λχb(v)‖‖χb(w)yχδ

ΛPFχb(u)‖

12The bound (8.31) of Lemma 8.4 holds also for Λ= R2.
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≤ Const ×
∑

u′
L2‖χb(u)RΛ(z)χ̃b(u′)‖‖W̃ (χδ

Λ)χ
δ
b (u

′)R(z)χb(v)‖

× ‖χb(w)PFχb(u)‖, (H.15)

where the sum is over u′ such that suppχδ
b (u

′) ∩ supp |∇χδ
Λ| �= ∅. Because of the existence

of the indicator function I(MΛ) in (H.6), the first factor in the summand is estimated as

‖χb(u)RΛ(z)χ̃b(u′)‖I(MΛ)≤ Const ×Lκ(ξ−2)+4 exp[−μ∞L2κ/3] (H.16)

from Lemma 8.1. The second factor can be estimated by using Lemma H.1. Therefore it is
sufficient to estimate the following quantity near the Fermi energy:

E
∫ y+

y−
dy‖χ̃b(u′)R(EF + iy)χb(v)‖‖χb(w)PFχb(u)‖. (H.17)

Note that
∫ y+

y−
dy‖χ̃b(u′)R(EF + iy)χb(v)‖ ≤

∫ y+

y−
dy‖χ̃b(u′)R(EF + iy)χb(v)‖s/2|y|s/2−1. (H.18)

Substituting this into the above, we obtain

E
∫ y+

y−
dy‖χ̃b(u′)R(EF + iy)χb(v)‖‖χb(w)PFχb(u)‖

≤ lim inf
εn→0

∫

In

dy|y|s/2−1E[‖χ̃b(u′)R(EF + iy)χb(v)‖s/2‖χb(w)PFχb(u)‖]

≤ lim inf
εn→0

∫

In

dy|y|s/2−1E[‖χ̃b(u′)R(EF + iy)χb(v)‖s]1/2E[‖χb(w)PFχb(u)‖2]1/2

≤ Const × exp[−μ|u′ − v|/2] exp[−μ|w − u|/2], (H.19)

where we have written In = [y−, y+]\(−εn, εn), and we have used Fatou’s lemma, Fubini–
Tonelli theorem, Schwarz’s inequality, the bounds (7.1) and (7.17). Thus, the corresponding
contribution is vanishing as L ↑ ∞.

Consequently, it is enough to consider TrχΩPF,Λx(χ
δ
Λ)

2PFyχ
δ
ΛPFχΩ which comes from

the first term in the right-hand side of (H.11). Using the adjoint of the geometric resolvent
equation, R(z)χδ

Λ = χδ
ΛRΛ(z)−R(z)W̃ (χδ

Λ)RΛ(z), we have

TrχΩPF,Λx(χ
δ
Λ)

2PFyχ
δ
ΛPFχΩ = TrχΩPF,Λx(χ

δ
Λ)

2PFy(χ
δ
Λ)

2PF,ΛχΩ + correction (H.20)

in the same way. The correction is vanishing as L ↑ ∞. Using the geometric resolvent equa-
tion again, the first term in the right-hand side is written

TrχΩPF,Λx(χ
δ
Λ)

2PFy(χ
δ
Λ)

2PF,ΛχΩ

= TrχΩPF,Λxχ
δ
ΛPF,Λy(χ

δ
Λ)

3PF,ΛχΩ

+ 1

2πi

∫

γ

dzTrχΩPF,Λxχ
δ
ΛRΛ(z)W̃ (χδ

Λ)R(z)y(χ
δ
Λ)

2PF,ΛχΩ. (H.21)
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The integrand in the second term in the right-hand side is written

TrχΩPF,Λxχ
δ
ΛRΛ(z)W̃ (χδ

Λ)R(z)y(χ
δ
Λ)

2PF,ΛχΩ

= TrχΩPF,Λxχ
δ
ΛχΛ′RΛ(z)W̃ (χδ

Λ)R(z)y(χ
δ
Λ)

2PF,ΛχΩ

+ TrχΩPF,Λxχ
δ
Λ(1 − χΛ′)RΛ(z)W̃ (χδ

Λ)R(z)y(χ
δ
Λ)

2PF,ΛχΩ, (H.22)

where χΛ′ is the characteristic function of the region Λ′ which satisfies the conditions
of (8.4). This right-hand side can be shown to be vanishing as L ↑ ∞ in the same way.
Consequently, we obtain

TrχΩPF,Λxχ
δ
ΛPF,Λy(χ

δ
Λ)

3PF,ΛχΩ = TrχΩPF,ΛxPF,ΛyPF,ΛχΩ + correction. (H.23)

The first term in the right-hand side is nothing but the desired form. �

Appendix I: The Index Formula for the Switch Functions

The aim of this appendix is to give a proof of the following theorem:

Theorem I.1 For a fixed period �P of the potentials ALP and V LP
0 in the Hamiltonian H LP

ω

of (9.13) on the whole plane R2, the following relation is valid almost surely:

Index(PFUaPF)= 2πi TrPF[[PF, λ1,a], [PF, λ2,a]], (I.1)

where λj,a, j = 1,2, are two switch functions given by

λ1,a(r) :=
{

1, for x − a1 ≥ 0;
0, for x − a1 < 0,

(I.2)

λ2,a(r) :=
{

1, for y − a2 ≥ 0;
0, for y − a2 < 0

with the locations a = (a1, a2) ∈ R2 of the steps.

Remark

1. The right-hand side of (I.1) is equal to the form of another Hall conductance which
was discussed in [10, 11]. Elgart and Schlein [7] justified this Hall conductance formula
within the linear response approximation under the assumption that the Fermi energy lies
in a spectral gap. They also proved that the value of (I.1) takes the desired integer under
the same gap assumption. As mentioned above, Germinet, Klein and Schenker proved
the constancy of (I.1) in the localization regime, for a random Landau Hamiltonian with
translation ergodicity, by using a consequence of the multiscale analysis.

2. From Theorem 9.4, we obtain that the Hall conductance using the position operator is
equal to that using the switch functions.
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We write the index as Is(PF;�P )= 2πi TrPF[[PF, λ1,a], [PF, λ2,a]]. First, we shall show
that the index Is(PF;�P ) is well defined for almost every ω. Note that

Tr |[PF, λ1,a][PF, λ2,a]|
≤

∑

u,v,w∈(Z2
ε )

∗
Tr |χε(u)[PF, λ1,a]χε(v)[PF, λ2,a]χε(w)|

≤
∑

u,v,w∈(Z2
ε )

∗
|λ1,a(u)− λ1,a(v)||λ2,a(v)− λ2,a(w)|Tr |χε(u)PFχε(v)PFχε(w)|, (I.3)

where χε(u) is the characteristic function of the ε1 × ε2 rectangular box sε(u) centered at
u, and we have chosen the set (Z2

ε)
∗ of the centers u of the boxes sε(u) so that a becomes a

vertex of a rectangular box, i.e., a ∈ Z2
ε . Using Schwarz’s inequality, we have

E[Tr |χε(u)PFχε(v)PFχε(w)|]
≤ √

E[Trχε(u)PFχε(v)PFχε(u)]
√

E[Trχε(w)PFχε(v)PFχε(w)] (I.4)

and

Trχε(u)PFχε(v)PFχε(u)

≤ √
Trχε(u)PFχε(u) · Trχε(u)PFχε(v)PFχε(v)PFχε(u)

≤ Const × ‖χε(u)PFχε(v)‖, (I.5)

where we have used the bound (8.27). From these bounds, we obtain

E[Tr |χε(u)PFχε(v)PFχε(w)|]
≤ Const × √

E[‖χε(u)PFχε(v)‖]
√

E[‖χε(w)PFχε(v)‖]
≤ Const × e−μ|u−v|/2e−μ|w−v|/2, (I.6)

where we have used the decay bound (7.17) for the Fermi sea projection. Note that

|λj,a(u)− λj,a(v)| =
{

0, for (uj − aj )(vj − aj ) > 0;
1, for (uj − aj )(vj − aj ) < 0,

(I.7)

and
√

|x1 − y1|2 + |x2 − y2|2 ≥ |x1 − y1|/2 + |x2 − y2|/2. (I.8)

Combining these, (I.3) and (I.6), we obtain

E[Tr |[PF, λ1,a][PF, λ2,a]|] ≤ Const ×
∑

u,v,w

e−μ|u1−a1|/4e−μ|v1−a1|/4e−μ|u2−v2|/4

× e−μ|w2−a2|/4e−μ|v2−a2|/4e−μ|w1−v1|/4 <∞. (I.9)

Thus the operator [PF, λ1,a][PF, λ2,a] is trace class for almost every ω.
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Next we show that the index Is(PF;�P ) is independent of the locations a1, a2 of the steps
of the switch functions λj,a. Let a′,a ∈ R2. Then we have

TrPF[[PF, λ1,a′ ], [PF, λ2,a′ ]] − TrPF[[PF, λ1,a], [PF, λ2,a]]
= TrPF[[PF, (λ1,a′ − λ1,a)], [PF, λ2,a′ ]]

+ TrPF[[PF, λ1,a], [PF, (λ2,a′ − λ2,a)]]. (I.10)

We will prove that the first term in the right-hand side is vanishing because the second term
can be handled in the same way. We choose ε = (ε1, ε2) so that both of a′ and a satisfy
a′,a ∈ Z2

ε(b) := Z2
ε − b with some b ∈ R2. We denote by (Z2

ε(b))
∗ the dual lattice of Z2

ε(b).

Lemma I.2 For u,v ∈ (Z2
ε(b))

∗, the following bound is valid:

E[Tr |χε(u)PFχε(v)|] ≤ Const × e−μ′|u−v| (I.11)

with some positive constant μ′.

Proof Note that

E[Tr |χε(u)PFχε(v)|] ≤
∑

w∈(Z2
ε (b))∗

E[Tr |χε(u)PFχε(w)χε(w)PFχε(v)|]

≤
∑

w∈(Z2
ε (b))∗

√
E[Trχε(u)PFχε(w)PFχε(u)]

× √
E[Trχε(v)PFχε(w)PFχε(v)]. (I.12)

Further, we have

Trχε(u)PFχε(w)PFχε(u)

≤ √
Trχε(u)PFχε(u)

√
Trχε(u)PFχε(w)PFχε(w)PFχε(u)

≤ Const × ‖χε(u)PFχε(w)‖, (I.13)

where we have used the bound (8.27). Combining this, the decay bound (7.17) for the Fermi
sea projection, (I.12), we obtain

E[Tr |χε(u)PFχε(v)|]
≤ Const ×

∑

w∈(Z2
ε (b))∗

e−μ|u−w|/2e−μ|w−v|/2 ≤ Const × e−μ′|u−v|. (I.14)
�

Now let us consider the first term in the right-hand side of (I.10). We write �λ for λ1,a′ −
λ1,a for short.

Lemma I.3 We have

E[Tr |�λ[PF, λ2,a′ ]|]<∞ and E[Tr |�λPF[PF, λ2,a′ ]|]<∞. (I.15)
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Proof Without loss of generality, we can assume a′
1 > a1. Then we obtain

E[Tr |�λ[PF, λ2,a′ ]|] ≤
∑

u,v∈(Z2
ε (b))∗

E[Tr |�λχε(u)[PF, λ2,a′ ]χε(v)|]

≤
∑

u,v∈(Z2
ε (b))∗

|λ1,a′(u)− λ1,a(u)||λ2,a′(v)− λ2,a′(u)|

× E[Tr |χε(u)PFχε(v)|]
≤

∑

a1<u1<a
′
1,u2

∑

v1,v2

e−μ′ |u1−v1|/2e−μ′|u2−a′
2|/2e−μ′ |v2−a′

2|/2 <∞, (I.16)

where we have used (I.7), (I.8) and Lemma I.2.
Similarly, we have

E[Tr |�λPF[PF, λ2,a′ ]|] ≤
∑

u,v,w

E[Tr |�λχε(u)PFχε(v)[PF, λ2,a′ ]χε(w)|]

≤
∑

u,v,w

|λ1,a′(u)− λ1,a(u)||λ2,a′(w)− λ2,a′(v)|

× E[Tr |χε(u)PFχε(v)PFχε(w)|]
≤ Const ×

∑

u,v,w

|λ1,a′(u)− λ1,a(u)||λ2,a′(w)− λ2,a′(v)|

× e−μ|u−v|/2e−μ|w−v|/2

≤ Const ×
∑

a1<u1<a
′
1,v1,w1

e−μ|u1−v1|/4e−μ|v1−w1|/4

×
∑

u2,v2,w2

e−μ|u2−v2|/4e−μ|v2−a′
2|/4e−μ|w2−a′

2|/4 <∞, (I.17)

where we have used the bound (I.6). �

Relying on this Lemma I.3, we have

TrPF[[PF,�λ], [PF, λ2,a′ ]]
= TrPF�λ(1 − PF)[PF, λ2,a′ ] + Tr[PF, λ2,a′ ](1 − PF)�λPF. (I.18)

Further, the first term in the right-hand side is written

TrPF�λ(1 − PF)[PF, λ2,a′ ]
= Tr�λ(1 − PF)[PF, λ2,a′ ]PF = Tr�λ(1 − PF)[PF, λ2,a′ ], (I.19)

where we have used (1 − PF)[PF, λ2,a′ ](1 − PF)= 0. The second term becomes

Tr[PF, λ2,a′ ](1 − PF)�λPF = Tr[PF, λ2,a′ ](1 − PF)χsupp�λ�λPF

= Tr�λPF[PF, λ2,a′ ](1 − PF)χsupp�λ

= Tr�λPF[PF, λ2,a′ ](1 − PF)

= Tr�λPF[PF, λ2,a′ ], (I.20)
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where χsupp�λ is the characteristic function of the support of �λ, and we have used
PF[PF, λ2,a′ ]PF = 0. As a result, we obtain

TrPF[[PF,�λ], [PF, λ2,a′ ]] = Tr�λ[PF, λ2,a′ ]. (I.21)

This right-hand side is decomposed into two parts as

Tr�λ[PF, λ2,a′ ] = Tr�λχ�[PF, λ2,a′ ] + Tr�λ(1 − χ�)[PF, λ2,a′ ] (I.22)

with the characteristic function χ� of the square box centered at r = 0 with a sufficiently
large sidelength �. Since we have

E[Tr |χ�PF|] ≤
∑

v

E[Tr |χ�PFχε(v)|]<∞ (I.23)

from Lemma I.2, the first term in the right-hand side is vanishing by cyclicity of the trace.
The second term can be evaluated in the same way as in the proof of Lemma I.3. In con-
sequence, it vanishes as � ↑ ∞. Thus we obtain TrPF[[PF,�λ], [PF, λ2,a′ ]] = 0. Since the
second term in the right-hand side of (I.10) can be handled in the same way, the index
Is(PF;�P ) is independent of the locations a1, a2 of the steps of the switch functions.

Using this property, the index is written

Is(PF;�P )= 2πi

V�

∑

a∈Λ�

∑

u,v,w∈(Z2
ε )

∗
[D12(v,w,u;a)−D21(v,w,u;a)]S(u,v,w,u) (I.24)

with

D12(v,w,u;a) := [λ1,a(v)− λ1,a(w)][λ2,a(w)− λ2,a(u)] (I.25)

and

D21(v,w,u;a) := [λ2,a(v)− λ2,a(w)][λ1,a(w)− λ1,a(u)], (I.26)

where both Λ� and V� are the same as in (9.18), and S(u,v,w,u) is given by (9.20). We
also write

Iε
s (PF;Ω,�P ) = 2πi

V�

∑

u∈Λ∗
�

∑

v,w∈(Z2
ε )

∗

∑

a∈Z2
ε

[D12(v,w,u;a)−D21(v,w,u;a)]

× S(u,v,w,u), (I.27)

where Λ∗
� is given by (9.21).

Lemma I.4 The following holds: E[|Is(PF;�P )− Iε
s (PF;Ω,�P )|] → 0 as |Ω| ↑ ∞.

Proof To begin with, we note that

|E[Trχε(u)PFχε(v)PFχε(w)PFχε(u)]| ≤ E[Tr |χε(v)PFχε(w)PFχε(u)|]
≤ Const × e−μ|v−w|/2e−μ|w−u|/2 (I.28)
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which is derived from (I.6). Using this, (I.7) and (I.8), we have

E[|Is(PF;�P )− Iε
s (PF;Ω,�P )|]

≤ Const

�2

∑

a∈Z2
ε\Λ�

∑

u∈Λ∗
�

+
∑

a∈Λ�

∑

u∈(Z2
ε )

∗\Λ∗
�

∑

v1,w1

e−μ|v1−a1|/4e−μ|w1−a1|/4e−μ|w1−u1|/4

×
∑

v2,w2

e−μ|v2−w2|/4e−μ|w2−a2|/4e−μ|u2−a2|/4

≤ Const

�2

∑

a∈Z2
ε\Λ�

∑

u∈Λ∗
�

+
∑

a∈Λ�

∑

u∈(Z2
ε )

∗\Λ∗
�

e−μ′|u1−a1|e−μ|u2−a2|/4 (I.29)

with a positive constant μ′. This right-hand side is easily shown to vanish as � ↑ ∞. �

Using the identity,
∑

a∈Z2
ε
[D12(v,w,u;a)−D21(v,w,u;a)] = −(v − w)× (w − u), one

has

Iε
s (PF;Ω,�P ) = −2πi

V�

∑

u∈Λ∗
�

∑

v,w

(v − w)× (w − u)Trχε(u)PFχε(v)PFχε(w)PFχε(u)

= Iε(PF;Ω,�P ), (I.30)

where we have used the expression (9.23) of Iε(PF;Ω,�P ) and (9.24). Combining this,
(9.28) and Lemma I.4, we obtain Theorem I.1.
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